摘要
1、超算中心:大国高性能计算底座,新基建重要一环
• 新基建等政策驱动超算中心建设快速推进
• 中国超算市场规模增速超全球,2025年有望达466亿元
2、智算中心:人工智能算力底座,赋能产业创新升级
• 华为参与建设智算中心19个,广泛分布于全国各地
• 中国智能算力规模2021-2025年CAGR有望达56.15%,预计2025年达922.8 EFLOPS
3、数据中心:新一代数据技术发展的数据中枢和算力载体
• 我国数据中心机架数量增长稳健,预计2024年达870万架
• 市场规模预计高增,预计2022-2025年CAGR 24.67% ,2025年有望超过3600亿元
4、芯片:GPU应用广泛,国产单卡性能接近国际领先水平
• 英伟达推出V100、A100、H100用于AI模型训练和推理
• 国产GPU单卡部分指标接近英伟达,推理应用更具竞争力
5、服务器:国产厂商全球市占率可观 服务器产品矩阵丰富
• 国产厂商全球市场份额占比达35%,浪潮信息位列国内外榜首
1、超算中心:大国高性能计算底座,新基建重要一环
01 超级计算用于处理极端复杂或数据密集型问题
• 超级计算,又称高性能计算 (HPC),是计算科学的重要前沿分支,指利用并行工作的多台计算机系统(即超级计算机)的集中式计算资源,处理极端复杂或数据密集型问题。超算能力是衡量一个国家或地区科技核心竞争力和综合国力的重要标志。
• 超算算力以每秒浮点运算次数衡量,一般以Petaflops(PFlops)为度量单位。
01 新基建等政策驱动超算中心建设快速推进
01 11家国家级超算中心概况
01 中国全球TOP500超算算力总和2023年已达966PFlops
• 在全球Top500榜单中,中国供应商制造超级计算机数量连续9次市场份额位居全球第一。2018年底-2020年中,全球Top500榜单中,中国超算上榜数量占比约为45%。
• 2017-2019年,中国供应商制造超级计算机算力总和在全球Top500超算算力总和占比约为三成,低于数量占比。
• 2020年起,中国停止向TOP500组织提交最新超算系统信息,故此后数量和算力占比均有所下滑。
01 中国超算市场规模增速超全球,2025年有望达466亿元
• 全球来看,据头豹研究院预计,以供应商HPC市场收入为口径进行市场规模测算,2017-2021年全球超算市场规模CAGR为12.2%,预计2021-2026年CAGR为6.1%,2026年超算HPC市场规模将达到395.3亿美元。
• 中国来看,根据沙利文研究测算,2016-2021年中国超算服务市场规模CAGR为24.7%,预计2021-2025年CAGR为24.1%,2025年中国超算服务市场规模将达到466亿元。
2、智算中心:人工智能算力底座,赋能产业创新升级
02 智算中心是提供AI算力服务的公共基础设施
02 智算中心可促进产业集群化,带来经济效益和社会效益
02 我国政府主导的智算中心供应商以华为为主
02 中国智能算力未来将保持快速增长
据IDC统计,2021年中国AI服务器市场规模为53.9亿美元,预计2025年达到103.4亿美元,2021-2025年CAGR达17.7%,2021年中国智能算力规模为155.2 EFLOPS,预计2025年达922.8 EFLOPS,2021-2025年CAGR达56.15%
3、数据中心:新一代数据技术发展的数据中枢和算力载体
03 数据中心是重要数据中枢和算力载体,具有四层架构
03 数据中心可按标准机架数量和级别可用性分类
03 2023年国家新型数据中心典型案例
03 我国数据中心机架数量增长稳健,市场规模预计高增
• 从机架数来看,据工信部通信发展司统计,2017年来我国数据中心机架数量保持稳健增长,其中大型规模以上机架数量占比不断提升,预计2022年我国数据中心机架规模将达到670万架,其中大型规模以上机架数量540万架
• 从市场规模看,据信通院统计,2021年我国数据中心市场规模突破1500亿元,2019-2021年CAGR为30.69%,我们预计2022-2025年有望保持CAGR 24.67%的复合增速,预计2025年我国数据中心市场规模有望突破3600亿元
4、芯片:GPU是核心,国产单卡性能接近国际领先水平
04 AI计算需多种芯片实现,GPGPU架构的DCU具有三大优势
04 英伟达推出V100、A100、H100用于AI模型训练和推理
04 国产GPU单卡部分指标接近英伟达,推理应用更具竞争力
5、服务器:国产厂商全球市占率可观服务器产品矩阵丰富
05 国产厂商全球市场份额占比达35%,浪潮信息位列国内外榜首
05 国产服务器厂商产品矩阵丰富
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。