在人工智能领域,众多AI平台犹如繁星般点缀着知识的宇宙,各自展现着独特的光芒。常有读者提出疑问:文心一言、通义千问、智谱AI、百川智能、天工AI、讯飞星火以及Kimi,这些平台各具何种特色,又适用于哪些特定的应用场景。本篇文章将对这些人工智能平台进行深入分析,旨在帮助您在智能助手的广阔领域中寻找到最耀眼的那颗星。
七大人工智能平台实力对比
平台特色深度阐释
Baichuan:百川智能,以其在跨领域知识融合和自然语言理解方面的深厚造诣,为用户在知识问答和信息整合服务方面提供了全面而深入的支持。
天工 AI:昆仑万维推出的天工 AI,凭借其卓越的准确性和效率,在文本生成和知识问答等领域展现了非凡的性能。
讯飞星火:科大讯飞推出的讯飞星火,依托其在语音技术领域的领先地位,为用户在语音输入和播报方面提供了流畅自然的交互体验。
Kimi:月之暗面科技推出的Kimi,凭借其在处理超长文本方面的卓越能力,在长文本创作和信息整理方面提供了独特的优势。
文心一言:百度倾力打造的文心一言,凭借其浩瀚的数据资源和博大精深的知识库,精通中文语义的理解与创作,成为文学创作与商业文案撰写中不可或缺的得力助手。
通义千问:阿里云精心推出的通义千问,依托其超凡的计算力和多轮交互技术,为用户在逻辑推理和编程代码编写方面提供了坚实的技术支持。
chatGLM:由清华大学智谱AI团队精心研发,该技术运用先进的深度学习技术,为用户在个性化推荐和精确数据分析服务方面提供了卓越的解决方案。
选择AI平台应考虑哪些因素?
在选择人工智能平台时,应依据个人的需求和应用场景进行审慎决策:
——对于文学创作或商业文案领域有浓厚兴趣的用户,文心一言平台能够提供丰富的灵感和创意支持。
——需要进行逻辑推理或编程的专业人士,通义千问平台将是其理想的辅助工具。
——当用户寻求个性化服务或数据分析时,智谱AI平台将提供精确的推荐和分析服务。
——面临跨领域知识问答或信息整合需求的用户,百川智能平台将展现其卓越的整合能力。
——对于需要快速且准确的文本生成或知识问答服务的用户,天工AI平台将是其理想的选择。
——对于有特殊需求的语音交互或文本生成用户,讯飞星火平台将提供卓越的语音技术体验。
——当用户需要处理超长文本或进行深入的信息检索时,Kimi平台以其超长文本处理能力满足用户需求。
选择人工智能平台,犹如选择生活中的伙伴,关键在于找到最适合自己的,而非单纯追求所谓最佳。愿每位用户都能找到最适合自己的平台,照亮其智能生活之路。
元宇宙投融邦
是一家一站式元宇宙品牌与场景运营服务商,我们为您提供全生态的品牌服务链条,从品牌全案策划到战略咨询,再到场景运营、IP打造以及营销传播,一应俱全,欢迎咨询。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。