众所周知,LSTM并不能很好地处理长序列和重要信息的突出,这导致在某些情况下性能不佳。而注意力机制模拟人类视觉注意力机制的特点可以很好地解决这个问题。
说具体点就是,注意力机制通过权重分布来决定应该关注输入序列中的哪些部分,它允许模型在生成输出时动态调整其关注的焦点,以便更好地捕捉输入序列中的关键信息。
如此一来,通过结合LSTM的长期依赖捕捉能力和注意力机制的动态关注焦点调整能力,我们的模型就可以更有效地处理各种复杂的序列处理任务,被应用到更多的领域。
为方便各位深入理解这一策略,我分享了9个****LSTM结合注意力机制的最新方案,涉及多领域应用,希望可以给同学们提供新的灵感。
Enhanced predictive modeling of hot rolling work roll wear using TCN‑LSTM‑Attention
方法:论文中提出了一个基于TCN-LSTM-Attention的新型工作辊磨损预测模型。该模型结合了TCN、LSTM网络和Attention机制。TCN用于提取数据特征,LSTM专注于捕捉长期和更复杂的序列模式,而Attention机制使模型能够更有效地捕捉输入序列中不同部分之间的关系。
创新点:
-
提出了基于TCN-LSTM-Attention的热轧工作辊磨损预测模型,通过Boruta算法进行异常值处理和特征选择,构建数据集。
-
引入了注意力机制,能够更有效地捕捉输入序列中不同部分之间的关系,显著提高了预测性能。
-
将工作辊磨损的预测结果与机理相结合,修正了带材冠高预测模型,显著提高了计算精度。
Integrating Remote Sensing Data and CNN-LSTM-Attention Techniques for Improved Forest Stock Volume Estimation: A Comprehensive Analysis of Baishanzu Forest Park, China
方法:建立了基于CNN-LSTM-Attention的森林蓄积量估计模型。模型利用卷积神经网络(CNN)提取遥感图像的空间特征,使用长短期记忆网络(LSTM)捕捉FSV的时间变化特征,并通过注意力机制突出对FSV响应强的特征变量,完成FSV的预测。
创新点:
-
本研究基于CNN-LSTM-Attention算法构建了一个基于卷积神经网络、长短期记忆神经网络和注意力机制的森林蓄积量(FSV)估算模型。
-
通过引入注意力机制,模型能够对FSV估算中与FSV响应高的特征变量进行加权,从而提高模型预测的性能。
-
与现有的MLR和RF模型相比,该模型在研究区域实现了更高的准确性(R2 =0.8463,rMSE =26.73 m3/ha,MAE =16.47 m3/ha)。
ULDNA: integrating unsupervised multi-source language models with LSTM-attention network for high-accuracy protein–DNA binding site prediction
方法:论文中提出的ULDNA模型是一个深度学习模型,专门用于从蛋白质序列中推断DNA结合位点。这个模型采用了LSTM-注意力架构,并嵌入了三个无监督语言模型,这些模型是在来自多个数据库源的大规模序列上预训练的。
创新点:
-
通过融合多个数据库源的无监督蛋白质语言模型,ULDNA能够捕捉与蛋白质- DNA相互作用相关的进化多样性特征嵌入,从而提高蛋白质-DNA结合位点预测的准确性。
-
作者设计了一个具有LSTM-attention网络的ULDNA模型,用于进一步加强进化多样性特征嵌入与DNA结合模式之间的关系,以提高预测准确性。
Wind Energy Assessment in Forested Regions Based on the Combination of WRF and LSTM-Attention Models
方法:本研究旨在构建适用于森林地形中风场模拟的天气研究与预报(WRF)模型,并结合带有注意机制的长短期记忆(LSTM)神经网络进行增强。该模拟侧重捕捉不同高度处的风特性,短期风速预测以及森林地区的风能评估。
创新点:
-
通过选择多个方案进行比较,发现YSU边界层方案和MM5地表层方案的设置可以模拟出最佳效果。
-
通过将WRF内部嵌套域的模拟结果输入LSTM神经网络并引入注意机制,对50m到150m高度的六个不同高度的风速进行预测,并与实测风速进行比较,预测值与实测值相符。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。