大语言模型移动边缘智能技术全面综述:技术背景、端云协同、部署框架、经验总结

在边缘设备上运行大型语言模型(LLMs)引起了相当大的兴趣,因为它们在隐私保护、降低延迟和节省带宽方面具有优势。尽管如此,与功能强大的云计算中心相比,设备本身的有限容量内在地限制了在设备上LLMs的能力。为了弥合基于云的和在设备上的AI之间的差距,移动边缘智能(MEI)提供了一种可行的解决方案,通过在移动网络边缘提供AI能力,与云计算相比具有更好的隐私和延迟表现。MEI介于在设备上的AI和基于云的AI之间,具有无线通信能力,并且比终端设备拥有更强大的计算资源。本文提供了一项关于利用MEI进行LLMs的现代综述。我们首先涵盖了LLMs的基础知识,从LLMs和MEI开始,随后是资源高效的LLM技术。然后,我们展示了几个关键应用,以证明在网络边缘部署LLMs的需求,并提出了MEI用于LLMs(MEI4LLM)的架构概览。接着,我们深入探讨了MEI4LLM的各个方面,广泛涵盖了边缘LLM缓存和交付、边缘LLM训练和边缘LLM推理。最后,我们确定了未来的研究方向。我们旨在激发该领域的研究人员利用移动边缘计算,以促进LLMs的部署,使其更接近用户,从而在各种对隐私和延迟敏感的应用中释放LLMs的潜力。

I 引言

A. 背景

大语言模型(LLMs)的出现是人工智能(AI)技术的一个里程碑,它使得通用智能成为可能。LLMs不仅在它们构建的任务上表现出色,例如生成文本响应,而且在多模态内容分析、摘要和泛化等任务上也表现出色。例如,GPT-4多模态模型接受图像和文本输入,产生文本输出,在各种专业和学术基准测试中展现出人类级别的性能。除了这些通常被称为基础模型的通用模型外,LLMs还可以被微调以适应特定的行业和应用场景。例如,Google设计的医疗LLM,Med-PaLM M [1],旨在提供基于丰富的数据模态(包括文本、影像、基因组学等)的高质量答案。Google DeepMind还开发了机器人2(RT-2)[2],这是一个用于控制机器人的视觉-语言-动作AI模型。广泛的用例突显了LLMs对日常生活的深远影响。由于相关的计算、存储和内存成本,现有的LLMs主要限于云数据中心提供服务。遗憾的是,基于云的LLM服务带来了固有的缺点,包括数据隐私泄露、高带宽成本和长服务延迟。用户必须上传他们的数据才能利用云中心的资源来访问LLM服务,这通常会导致显著的通信延迟。此外,上传私人数据对用户隐私构成了严重风险,尤其是在像智能健康这样的隐私敏感应用中。鉴于这些担忧,人们对在设备上部署LLM的兴趣日益增加,这在主要行业参与者之间引发了一场竞争。例如,Google已经在Pixel 8 Pro智能手机上推出了Gemini Nano,分别拥有18亿和32.5亿参数[3]。高通计划在Snapdragon驱动的旗舰智能手机和个人电脑上推出Llama 2支持[4]。在设备上部署LLM可以实现对敏感个人数据(如端到端(E2E)加密消息和健康数据)的本地处理。它还为机器人规划和自动驾驶等对延迟敏感的应用提供了低响应时间。这些显著的优势推动了LLMs从云中心向移动设备的持续转移。

B. 移动边缘智能(MEI)

尽管在设备上的LLM正在成为一个快速增长的领域,但它们在广泛部署方面面临着严重的限制。具体来说,边缘设备上的计算、内存和存储资源的稀缺性大大限制了在设备上LLM的规模。一方面,现有的工业努力集中在小于100亿参数(10 billion parameters)的LLMs上,因为它们对在设备上部署有巨大的资源需求。例如,Google的Gemini Nano依赖于4位模型,分别有18亿和32.5亿参数,只能支持相对“基本”的功能,如文本摘要、智能回复建议和语法检查[3]。然而,随着所需功能的复杂性增加,有必要在设备上部署更大规模的LLM,这可能会显著增加LLM在设备上推理的开销。另一方面,在设备上微调为个性化和感知上下文的AI铺平了道路,这是实现卓越AI性能的基础。然而,现有的在设备上LLM产品没有纳入在设备上训练(微调)功能,因为训练成本通常比AI推理要高得多。为了解决前述的困境,移动边缘计算提供了一个有希望的解决方案。6G移动网络旨在通过利用边缘计算系统,为广泛的移动设备提供低延迟的AI推理和训练服务,这些系统位于基站等网络端的计算能力上。这引出了一个名为“移动边缘智能(MEI)”的范式。MEI介于在设备上的AI和基于云的AI之间,具有无线通信和适度规模的计算资源。换句话说,它比边缘设备更强大,但不如云中心那么强大。由于边缘设备和边缘服务器之间的距离很短,可以支持大规模的LLMs,同时服务延迟较低。同时,6G边缘可以利用边缘服务器上更强大的内存、能量和计算能力,在不断变化的环境中不断微调LLMs。因此,6G移动边缘预计将在将LLMs推向边缘设备方面发挥重要作用。

C. 比较与先前综述和我们的贡献

LLMs的部署比传统的深度神经网络(如卷积神经网络CNNs)更加资源密集,这是将LLMs带到网络边缘的主要障碍。本文旨在提供这项汇聚趋势的现代综述,即MEI和LLMs,主要从资源高效部署的角度,包括存储效率、计算效率和网络边缘的通信效率。本文与先前关于高效LLM训练/微调和推理的综述论文不同,如[5]、[7]、[9]、[11]–[15]。这些论文主要关注提高计算效率,同时忽视了通信对LLM训练、推理以及缓存和交付的影响,这在移动边缘网络中是一个显著的瓶颈。本文还与现有的关于LLM边缘部署的综述/文章不同,如[6]、[8]、[10]、[16]。这些论文探讨了云边协同下的LLM赋能AI服务提供,而没有讨论资源高效部署,如参数高效微调、分割推理/学习以及高效的LLM缓存和交付及其与无线边缘网络的相互作用。最后,值得注意的是,这篇综述论文与这些关于“网络中的LLMs”的论文根本不同[17]、[18],其设计目标是使用LLMs来优化边缘网络,而不是利用边缘计算来支持LLMs。与一些相关的综述/论文的比较在表I中提供。本文的主要贡献总结如下:

  • 我们展示了推动LLMs在网络边缘部署的应用场景。尽管LLMs的用例已在其他地方广泛讨论,我们将强调基于服务需求,在移动边缘提供这些应用的必要性或好处。

  • 我们提供了第一个全面的综述,介绍6G边缘网络如何促进LLM缓存和交付、训练和推理,包括边缘LLM缓存和交付、边缘LLM训练和边缘LLM推理。我们将特别集中于LLMs的资源高效部署,以提高LLMs在网络边缘的存储、通信和计算效率。

  • 我们确定了LLMs与移动边缘智能集成的几个关键研究方向,包括绿色边缘AI和安全边缘AI用于LLMs。

如图1所示,本综述的组织结构如下。第二节介绍了LLMs和MEI的概述,第三节介绍了最新的资源高效LLM技术。第四节展示了四个关键应用,证明了在网络边缘部署LLMs的必要性。第五节,我们提出了MEI用于LLM(MEI4LLM)的框架,支持在网络边缘部署LLMs。该框架包括AI原生架构、参数共享LLM缓存和交付、分布式LLM训练/微调和分布式LLM推理。第六节、第七节和第八节分别深入探讨了边缘LLM缓存和交付、边缘LLM训练和边缘LLM推理的高效技术,分别考虑了存储效率、计算效率和通信效率。最后,我们在第九节概述了未来研究机会的路线图,并在第十节提出了我们的结论。

预备知识 I:LLMs 和 MEI 概述

A. 大型语言模型

1) Transformers:大多数LLMs都是基于Transformer架构构建的。Transformer在自然语言处理(NLP)领域引发了重大的范式转变,证明了其在广泛的语言任务上的卓越性能,包括文本分类、机器翻译和问答等。例如,双向编码器表示(BERT)在问答任务上取得了最先进的性能,展示了其在有效捕获上下文信息方面的优越性。Transformer的突破不仅限于NLP,还在计算机视觉领域取得了巨大成功。Transformer模型及其变体已被广泛用于各种图像处理任务,如图像识别、目标检测和图像分割等。例如,视觉Transformer(ViT)将图像分割成不重叠的块,并使用Transformer编码器提取特征,比传统的CNNs具有更高的检测精度。Transformer的工作原理如下:与RNNs中的递归连接和序列处理不同,Transformer采用了自注意力机制来全面捕捉序列元素之间的复杂依赖关系,学习长距离关系。Transformer架构设计的核心在于编码器-解码器架构,由多层堆叠的多头自注意力机制组成。这些机制优先处理输入序列中的不同元素,增强了模型有效生成输出标记的能力。此外,每层都包括前馈网络(FFNs)和层归一化。编码器将输入序列转换为富含上下文的表示,而解码器则利用这些表示生成输出序列,同时考虑输入和之前生成的标记。自注意力是Transformer的核心。自注意力机制嵌入在Transformer中,克服了RNNs固有的短期上下文限制,全面把握长距离依赖关系,并增强了捕捉序列中复杂关系的能力。尽管注意力模块已在前馈和递归网络中广泛使用,但Transformer完全依赖于注意力机制,并采用了独特的实现方式(即多头注意力(MHA))进行并行化优化,促进了在高复杂性模型和大规模数据集上的可扩展性。与其他替代方案(如硬注意力)相比,后者本质上是随机的,需要蒙特卡洛抽样来对注意力位置进行采样。此外,与卷积或递归对应物相比,Transformer几乎不需要对问题结构的先验知识。这一特性使它适合通过在大规模未标记数据集上进行预训练任务来预训练模型,从而能够编码高度表达性和可泛化的表示。这些表示有效地捕获给定数据集中实体之间的关系,为后续的下游任务的监督微调奠定了基础。

2) LLMs:Transformer的可扩展性推动了LLMs的兴起。基于Transformer架构构建和演变了多种LLMs。目前,AI行业的主力公司致力于打造自己的LLMs,并将其应用于各个领域。例如,OpenAI开发了备受推崇的聊天LLM GPT3,展示了在各种NLP任务上的卓越性能,如文本生成和机器翻译。Google引入了医疗LLM Med-PaLM,能够提供专家级的医疗指导和诊断。Facebook提出了创新的图像分类LLM DEiT,将自监督学习与Transformer架构相结合,实现了在有限的标注数据上达到种族级别的图像分类性能。这些LLMs在互联网上可用的广泛和多样化的数据集上进行了训练。LLM架构可以分为三类:仅编码器LLMs、编码器-解码器LLMs和仅解码器LLMs。仅编码器LLMs,如ALBERT,仅由编码器组件组成,通常基于Transformer等高级架构。编码器负责处理输入序列,为每个标记生成上下文化表示。尽管缺少解码器来产生输出序列,但由于其有效的特征提取能力和适应性表示,仅编码器LLMs在文本分类、句子相似性计算和语言理解等NLP任务上仍然表现出色。编码器-解码器LLMs,如T5模型,代表了NLP领域的一个关键进步,将编码器和解码器组件整合到其架构中。编码器处理输入序列以生成上下文化表示,而解码器则利用这些表示生成输出序列,通常以序列到序列的方式进行。编码器-解码器LLMs在机器翻译、文本摘要和问答等任务上得到广泛应用,因为它们能够捕获复杂的语言结构和上下文依赖关系。仅解码器LLMs,如著名的GPT系列,是LLMs的一个重要分支。仅解码器LLMs采用自回归解码,这在仅解码器和编码器-解码器LLMs中都被广泛使用,基于序列中的先前标记生成输出序列。这种架构设计使它们特别适合于模型按顺序生成文本的任务,如语言生成、文本补全和对话响应生成。

  1. 多模态LLMs:由于传统的LLMs主要应用于文本数据,LLMs的单模态模型训练限制了它们理解超出文本的其他数据类型的能力。例如,像GPT-3和BERT这样的传统LLMs只依赖于文本输入。然而,在许多现实世界场景中,语言理解不限于文本内容,还包括视觉线索、听觉信号和来自不同传感器的上下文感知信息。为了解决上述问题,学术界和工业界深入研究了图2所示的多模态LLMs范式,将文本、图像和音频等各种模态融合到一个统一框架中,释放了处理多样化数据类型的潜力。例如,GPT-4擅长同时处理图像和文本输入,在各种基准测试中展现出与人类相媲美的性能。在图像描述任务中,GPT-4利用图像和相关的文本数据生成更精确、生动的描述,而在语音识别任务中,它结合语音信号和文本信息来提高语音理解和转换能力。多模态感知在追求通用AI的过程中起着关键作用,驱动着处理复杂现实世界数据的必然需求。这需要AI模型能够进行跨模态信息融合和交互式学习,提高多个感知领域的训练性能。多模态LLMs继承了LLMs的强大学习能力,通过整合各种模态的基础模型,增强了处理多样化和复杂的多模态任务的能力。LLMs提供了强大的语言生成能力、零样本转移能力和上下文学习能力,而其他模态的基础模型提供了其他数据类型的有信息的表示。由于不同模态的基础模型各自进行了预训练,构建多模态LLMs的主要挑战在于如何连接这些模型以实现高性能的协同训练/推理。该领域的主要研究集中在通过多模态预训练和多模态指令调整来完善模态对齐[47]、[48]和[49]、[50]。多模态预训练通过使用多模态数据集训练模型,学习跨模态的共同表示,例如XText[51]。在训练过程中,模型通过优化预定义的目标,学习将来自不同模态的信息相关联,从而实现跨模态的对齐。这种对齐增强了模型对跨模态关系的理解,导致在各种跨模态任务中的性能提高。多模态指令调整是一种基于预训练模型的微调方法,旨在提高模型在特定任务上的性能。它将模型与一个或多个与模态相关的任务结合起来,然后使用模态标记的数据对模型进行微调,以提高其与模态特定任务的对齐。多模态指令调整使模型能够通过遵循新指令学习增强未见任务的能力,从而提高模型的零样本性能和泛化能力。

4) 生成/交互式AI:LLMs的快速发展对各种应用产生了深远影响,特别是在生成AI(GAI)和交互式AI(IAI)方面。GAI专注于创建包括图像、文本、音乐和视频在内的广泛内容,统称为AI生成内容(AIGC)。通过使用在高质量数据集上训练的多模态LLMs,GAI可以有效地基于输入文本创建优质的AIGC[53]。另一方面,IAI可以被视为GAI的下一个阶段。IAI在聊天机器人和虚拟助手等应用中响应用户查询,同时使AI代理能够通过用户交互进行适应,从而不断提高准确性[54]、[55]。通过利用功能强大的LLMs和GAI的内容生成优势,IAI使AI代理能够模仿人类交互并生成有意义和动态的对话[56]、[57]。在这方面,LLMs也被视为IAI的基石,因为它们促进了复杂的交互对话。为了使AI代理能够生成更准确和最新的响应,可以在LLMs中集成检索增强生成(RAG),以增强IAI和GAI[58]。具体来说,LLMs在生成响应时使用输入序列从外部知识源检索相关数据,从而提高内容生成性能[59]、[60]。例如,Google将RAG与Gemini结合使用,增强LLMs生成更准确和上下文相关的响应的能力[61]。将RAG集成到LLMs中的主要优点有两个。首先,通过连接到充满最新信息的知识源,RAG使LLMs基于最真实、准确和最新的内容,减少了生成输出中的“幻觉”可能性,并消除了频繁适应LLMs的需要。其次,RAG使用户能够验证模型响应的来源,提高了可信度[62]。

5) 工业界LLMs的进展:由于深度学习算法的成熟[63]–[65]、计算能力的提高和大规模数据集的可用性,LLMs在工业界取得了显著进展。包括OpenAI、Google、Microsoft和Meta在内的主要技术公司在LLM研究和开发上进行了大量投资,导致了像GPT系列[34]、[40]和BERT[23]这样的杰出模型的创建。这些模型在包括语言翻译、文本生成、问答和情感分析在内的一系列NLP任务上展示了卓越的性能。此外,多模态LLMs已经超越了它们最初的NLP领域,并在医疗保健、自动驾驶和智能城市等不同领域大放异彩。例如,在医疗保健领域,Med-PaLM被设计用于医学图像分析、临床文档处理和患者诊断,帮助医疗专业人员做出准确的诊断和治疗决策。在自动驾驶领域,DriveMLM弥合了语言决策和车辆控制命令之间的差距,实现了在现实模拟器中的闭环自动驾驶。可以看出,LLMs的扩散为多个行业提供了巨大的价值。最近在设备上的LLMs的进展已经引起了行业的关注。例如,Meta提出了一个名为MobileLLM的设备上LLM,利用深度和薄架构、嵌入共享和分组查询注意力机制[67]。Google为构建以移动为中心的文本重写LLM引入了一种新的指令调整方法[68]。尽管如此,在设备上的LLMs通常与更大模型尺寸的强大LLMs相比表现不佳。例如,Google为设备上部署而设计的Gemini Nano-1,以4位格式包含仅18亿参数,这些参数从更大的Gemini模型中提取[69]。由于其紧凑的尺寸,当这样的小型LLM的能力不足以满足边缘设备的要求时,这些设备可能仍然需要上传数据以访问大规模的LLMs,即在边缘服务器上。

B. 移动边缘智能 (MEI) 的发展

MEI 作为一个融合了人工智能与移动边缘计算的有前景的范式,彻底改变了移动服务和应用的格局。MEI 的发展源于多种技术进步的融合,包括物联网(IoT)设备的普及、移动网络的部署以及人工智能算法的成熟。这些发展使 MEI 能够克服传统以云为中心的架构的限制,通过在网络边缘提供本地化的人工智能训练/推理和数据处理能力。通过整合人工智能和通信,MEI 框架使移动网络能够提供超越通信的服务,为万物智能奠定了坚实的基础。沿着这条线,"集成人工智能和通信"的用例已经被包括在6G的IMT框架建议中。在标准化方面,电信标准化组织3GPP和ITU已经在它们的白皮书中描绘了边缘智能的前景。ITU-3172阐明了基于机器学习应用的延迟敏感要求,在网络边缘托管机器学习功能的必要性。在3GPP针对5G标准化的第18版中,MEI旨在支持分布式学习算法、分割的AI/ML和高效的AI模型分发。

接下来详细阐述这些内容。首先,边缘学习,如联邦学习,将在边缘网络中得到全面支持,这使边缘服务器能够聚合来自多个分布式边缘设备模型更新和知识,从而提高AI/ML模型的性能。其次,5G边缘网络中的分割AI/ML可以促进在具有冲突要求的设备上部署AI应用,例如计算密集型、能耗密集型、隐私敏感型和延迟敏感型要求。例如,在边缘分割推理中,AI模型被分割为子模型,计算密集型和能耗密集型的子模型被卸载到5G边缘服务器(例如基站)。边缘服务器可以执行带有边缘侧子模型的推理,并上传来自边缘设备的中间数据。最后,高效的AI模型下载确保当边缘设备需要适应新的AI任务和环境时,AI模型可以以低延迟被传送到边缘设备。例如,自动驾驶车辆在驾驶环境变化时需要在1秒内从5G边缘服务器下载新的AI模型。为了将基于网络的AI算法整合到5G网络中,MEI框架需要满足边缘服务器和边缘设备之间高速稳定数据链路的请求。这些链路可以为持续上传中间数据/模型更新到边缘服务器提供高且恒定的上行数据速率,并在突发情况下为下载AI模型到边缘设备提供高下行数据速率。此外,MEI的核心是利用数据源与边缘计算设备(例如智能手机、笔记本电脑和可穿戴设备)的接近性,以实现更接近数据源的智能决策。这种分布式计算范式比传统的集中式架构具有许多优点,包括延迟减少、带宽利用改善、数据隐私保护和增强对网络故障的弹性。在应用方面,MEI在各个领域都具有重要的意义,如智能医疗、自动驾驶和智能城市。例如,在医疗领域,MEI能够实现患者健康数据的实时监控,并在紧急情况下促进及时干预。同样,在智能城市中,MEI有助于智能交通管理、环境监测和能源优化,从而促进可持续性和提高生活质量。

边缘智能也在工业界取得了显著进展,特别是随着边缘计算技术和5G网络的出现。领先的企业,如微软、谷歌、亚马逊和英伟达,已经开发了边缘AI平台来支持实时AI服务。对于边缘AI赋能的IoT应用,微软的"Azure IoT Edge"、谷歌的"Cloud IoT"、亚马逊的"Web Services IoT"和英伟达的"EGX"提供了边缘AI平台,以在从实时视频分析[81]、智能家居[82]到工业IoT[83]的广泛应用中提供实时AI服务。

C. MEI4LLM的教训

显然,MEI4LLM不过是MEI的一个特例。然而,在边缘训练和部署大量LLM的需求可能是推动MEI发展的关键动力。一方面,下一代MEI的原则,包括推动AI和通信的完全整合,与边缘LLM的需求非常契合。另一方面,LLMs的极端资源需求推动了MEI的边界。具体来说,MEI4LLM必须具备以下特点:1) 原生支持模型分割和跨互连边缘节点的并行训练/推理,以便于部署极大规模模型;2) 无线网络和资源高效LLM训练/推理技术的集成设计,如参数高效微调和令牌(表示)减少(将在第七节和第八节中介绍),使LLM部署具有成本效益。本质上,与传统MEI相比,MEI4LLM主要侧重于探索资源管理和高效AI技术的集成设计,以支持有限通信计算资源下的LLMs,这将是本综述论文和该领域研究主题的重点。

III. 预备知识 II: 资源高效LLM技术

毫无疑问,由于LLMs的庞大规模和计算复杂性,在边缘设备/服务器上部署LLMs进行训练/推理提出了几个关键挑战:

  • 过度的计算开销:据报道,GPT-4生成一个标记的前向传播大约需要560万亿次浮点运算[84]。然而,先进的A100 GPU仅提供每秒195万亿次浮点运算的计算能力[85]。这表明,使用单个A100 GPU生成GPT-4的一个标记大约需要28秒。此外,反向传播通常需要比前向传播更多的计算资源[86],这意味着在设备上进行训练将更具挑战性。

  • 巨大的存储/内存需求:一方面,在边缘设备上缓存LLMs会消耗大量的存储资源。即使是为在设备上部署而设计的LLMs也有数十亿参数,例如,Google的在设备上的Gemini Nano-2有32.5亿参数。另一方面,在训练期间通常使用的Adam优化器通常需要比推理多12倍的内存资源[87],这对于内存有限的移动设备来说是不可接受的。这些因素表明,在边缘设备上部署LLMs进行训练和推理对边缘设备的存储和内存资源提出了严格的要求。

  • 高能耗成本:边缘设备的电池容量有限,限制了在边缘设备上部署LLMs。例如,在小米11智能手机上使用llama.cpp(最轻量级的在设备上LLM引擎之一)运行一个量化为INT4、有130亿参数的LLM,每个标记的能耗大约是56焦耳[88]。这意味着,如果LLM部署在智能手机上,一个电池容量为3000毫安时、输出电压为3.7伏的智能手机只能生成大约700个标记。如果需要在边缘设备上进行LLM训练/微调,可以处理的数据量会更少。为了缓解上述挑战,本节将回顾为资源高效LLM部署量身定制的技术,如图3所示。相关工作的比较显示在表II中。值得注意的是,本节讨论的方法可以降低在边缘设备、边缘服务器或设备-服务器协作上部署LLMs的复杂性。因此,这些关键技术作为MEI4LLM和所有后续章节的基础。

A. 资源高效推理

在设备上的LLM推理消除了隐私泄露和互联网连接的需求。然而,它为在设备上部署提出了重大挑战,因为LLMs需要大量的计算、内存和能源资源。下面,我们将简要介绍如何通过引入高效的在设备上LLM推理技术来缓解这些问题。

  1. LLM压缩:LLM压缩能够在边缘设备上部署压缩的LLMs,显著减轻了边缘设备上的内存/存储和计算需求。设计目标是在不大幅妥协推理准确性的情况下压缩LLMs。尽管在传统DNNs领域已经广泛研究了压缩,但LLMs独特的架构和属性需要重新设计现有的压缩策略。以下是针对LLMs的压缩技术细节。

量化:量化将LLM参数从高精度浮点数(例如FP16)转换为低精度数(例如INT4),从而在推理期间减少存储使用、计算延迟和能源足迹。经典的模型量化可以分为两类:后训练量化(PTQ)和量化感知训练(QAT)。PTQ涉及直接将训练模型的参数转换为较低精度[90],而QAT在训练阶段考虑量化误差以提高量化模型的性能[113]。尽管QAT通常会产生更好的性能,但它需要模型重新训练,这对于在设备上的LLMs来说资源密集。因此,大多数在设备上的LLM量化方法依赖于PTQ[114]。与传统量化策略针对权重和激活都进行量化不同,LLM量化主要关注权重量化[89]。原因如下:首先,对激活进行量化会导致LLMs的性能下降更为显著[115]。其次,使用LLMs生成新标记时,延迟和能源消耗的主要来源通常是由于从内存中加载模型参数[88]。因此,权重量化允许更有效地从内存中加载量化权重,使推理更加高效,而不会显著降低推理准确性。

在LLM量化中,可以采用不均匀权重量化来保留量化LLMs的推理准确性,因为并非所有LLM中的权重对最终推理结果的贡献都相等[90]。例如,[90]中的作者提出了激活感知权重量化,用于不均匀权重量化。这种方法将LLMs中的大部分权重从FP16量化到INT3/INT4。然而,它保留了大约1%的关键权重以FP16格式,这些权重对量化误差有显著影响。

修剪:与量化不同,修剪旨在通过直接移除冗余或不重要的参数来缩小LLMs的规模,从而有效减少计算工作量和存储使用。根据修剪的粒度,修剪方法可以分为结构化修剪[116]和非结构化修剪[117]。1) 结构化修剪修剪结构化模式,例如LLMs中的子块。例如,LLM-Pruner[91]利用梯度信息和估计的Hessian矩阵来为LLMs中的耦合结构(如注意力头)做出修剪决策。然后,修剪后的LLMs通过LoRA[112]进行微调,以恢复模型性能。通过结构化修剪修剪的压缩LLMs可以直接部署并在标准计算框架上执行,而无需额外调整,因为结构化修剪移除了LLMs中的整个结构。2) 非结构化修剪旨在移除个别权重,通过将不重要的权重设置为零来实现更细粒度的修剪。这种方法使权重变得稀疏,允许我们利用稀疏性来加速LLMs的推理。例如,SparseGPT[92]将修剪问题转化为一系列大规模稀疏回归问题,并用一种创新的近似求解器来解决它们。提出的SparseGPT在显著准确性损失之前能够实现高达60%的稀疏度。

知识蒸馏:知识蒸馏(KD)[119]涉及将知识从一个大型复杂教师模型转移到一个更小的学生模型。这种技术使学生模型能够学习教师模型的行为,使其适合在资源受限的边缘设备上部署,同时确保竞争性能。1) 当教师模型完全可访问时,KD过程被称为白盒KD,允许学生模型学习教师模型的输出分布、中间特征和激活[11]、[120]。例如,MiniLLM[93]通过最小化学生和教师模型输出分布之间的反向Kullback-Leibler散度,解决了传统KD损失函数在文本生成任务中表现不佳的问题,从而提高了学生模型的性能。此外,作者还推导出了一种有效的优化策略来更新学生模型。2) 当模型的内部结构不可访问时,KD的形式被称为黑盒KD[120]。这种方法特别适合封闭源LLMs,因为大多数LLM访问限于通过API输出。黑盒KD的一种方法是通过教师LLM生成大量提示-响应对,并使学生LLM从教师LLM的输出中学习。例如,在[94]中的作者生成了一组258万个指令,并使用GPT-3.5 Turbo API产生响应。这些指令随后用于微调各种学生语言模型。经过蒸馏的语言模型可以实现与7B LLaMA[121]相当的性能,甚至在某些方面表现更好。

  1. LLMs的快速解码:快速解码方法可以在在设备上部署LLM时使用,以节省边缘设备的计算资源,并促进在设备上的推理。典型的快速解码方法可以分为推测性解码、早期退出、混合专家、上下文稀疏性预测和并行解码,下面将详细阐述。

推测性解码:LLMs通常以自回归方式生成文本输出,每次前向传播基于之前生成的标记生成一个标记。因此,生成一个序列所需的迭代次数等于输出序列的长度,导致显著的延迟和沉重的计算开销。为了解决这个问题,[95]中的作者提出了推测性解码。在这种方法中,一个轻量级语言模型首先自回归地生成一个序列。然后,这些输出标记由更强大的LLM在单一推理步骤中进行验证和纠正。推测性解码可以显著减少LLM推理延迟。在传统的LLM推理范式中,当模型的内存需求超过边缘设备的容量时,每个推理过程都需要动态地从内存中释放推断出的参数,并将新参数从磁盘加载到内存[122]。这个过程可能占到推理延迟的90%[88]。相比之下,在推测性解码中,轻量级模型可以保留在内存中,持续在边缘设备上生成标记,而强大的LLM在单一推理步骤中验证和纠正轻量级模型生成的整个标记序列。这个过程减少了内存加载操作,从而降低了推理延迟。在[88]中,作者展示了推测性解码在保持生成内容质量的同时,可以减半每个标记生成延迟和能耗,超越了推理中的传统自回归方法。

早期退出:为了最小化计算延迟,可以采用早期退出策略来绕过输入标记穿过的某些后续层,有效地加速推理时间。在Transformers的情况下,早期退出模块可能被纳入一些早期块[96]、[123],其中中间层的输出在达到所需置信值时在退出点转换为最终输出。然而,传统的早期退出技术可能在LLM推理中无效,因为早期退出层输出结果的隐藏状态可能在后续层中缺失[124]。例如,在早期退出时,后续层中相应标记的隐藏状态和键值(KV)缓存将缺失,阻碍了未来标记序列的生成[125]。为了解决这个挑战,可以从退出层将当前标记的隐藏状态转发到后续层进行KV缓存计算[97]、[126],如果标记在退出层输出结果。

混合专家(MoE):混合专家(MoE)可以有效地扩展LLM容量并提高各种下游任务的性能[127]–[129]。具体来说,可以将原始的FFN替换为专家网络,该网络由多个FFN专家和一个路由器组成。

在推理期间,路由器将给定的输入标记定向到最适合的FFN专家或专家组。 在这种情况下,为了减轻在边缘设备上部署LLMs时将大量参数加载到内存中的负担,可以利用MoE架构,以便在推理期间只激活和加载LLM的一部分。例如,在[98]中,作者提出了EdgeMoE,以提高基于MoE的LLMs在边缘设备上的推理内存效率。占用较少存储但需要更多计算资源的非专家权重始终保留在内存中。相比之下,占用较少计算资源的大型专家权重保存在磁盘上。只有在特定任务需要时才激活并将所需专家权重在磁盘和内存之间传输。为了进一步减少内存消耗,EdgeMoE根据下游任务中用户指定的准确性降低阈值,将专家权重量化为不同的位宽。与将所有模型权重加载到运行内存的方法相比,EdgeMoE可以节省2.6到3.2倍的运行内存。

上下文稀疏性预测:上下文稀疏性预测涉及预测推理计算中需要的少量且输入依赖的注意力头和多层感知器(MLP)参数集[99]、[130]。例如,在[99]中,作者提出了Dejavu推理系统,在MLP和注意力块之后插入了轻量级预测器。根据当前块的输入,预测下一块的上下文稀疏性。使用预测的稀疏性,只有下一块中的一小部分MLP参数或注意力头被激活并加载到边缘设备的运行内存中进行推理计算。这种方法减少了计算开销和推理延迟,同时保持了大约相同的推理准确性。例如,使用Dejavu推理系统,OPT-175B的平均准确率在75%的稀疏性下不会降低。此外,与FasterTransformer相比,Dejavu推理系统可以将OPT-175B的推理延迟减少约一半,达到大约75%的稀疏性。

并行解码:并行解码使LLM能够在不依赖于推测性解码中使用的轻量级语言模型的情况下,在单个前向传递中生成多个后续标记[11]、[131]。例如,在[100]中,作者提出了Medusa,并在LLM的最后隐藏状态之上引入了额外的解码头。在推理期间,每个额外的解码头可以并行预测其指定位置的多个后续标记。这些预测被组装成候选项,然后与基于树的注意力机制并行处理。在验证了所有候选项之后,接受一个合理的候选项进入下一个解码阶段。此外,在[101]中,作者提出了Lookahead Decoding,将自回归解码表述为非线性系统,并通过固定点雅可比迭代法求解。在每个推理步骤中,LLM并行生成几个不相交的n-gram,并从n-gram池中并行验证有希望的n-gram,该池缓存了历史生成的n-gram。有希望的n-gram以与当前进行序列的最后一个标记完全匹配的标记开始。这两种方法充分利用了自回归解码本来会闲置的计算资源。与自回归解码相比,Medusa在16批处理大小和Llama 33B的情况下,注意力矩阵乘法的操作强度达到了41倍,表明更好地利用了边缘设备的计算资源,并减少了推理延迟。

稀疏注意力:稀疏注意力旨在减少Transformers中注意力机制的计算开销和内存使用[132]。传统上,注意力机制计算所有查询元素与键序列之间的关系,导致大量的计算延迟。然而,研究发现忽略查询和键之间较不重要的交互可以节省计算资源,而不会显著降低推理性能[133]–[135]。在[102]中,作者提出了分层修剪的注意力,证明只附加每个查询的前k个键标记可以加速推理过程并减少内存使用,而不会显著降低性能。此外,作者在[132]中对注意力机制中的稀疏性进行了全面的理论分析,提供了计算效率和模型性能之间潜在权衡的宝贵见解。此外,稀疏注意力在LLM微调中也很有利。例如,在[136]中,Gui等人为LLM微调引入了稀疏MHA模块。通过将LLMs中的原始MHA模块替换为稀疏MHA模块,输出变为稀疏矩阵,有效减少了峰值内存消耗并加速了微调过程。

KV缓存优化:在自回归解码阶段,LLMs需要存储先前标记的KV缓存以生成未来的标记。随着生成更多标记,KV缓存的大小不断增加,导致更高的内存消耗和增加的推理延迟。为了在边缘设备上实现高效的在设备上LLM推理,减少KV缓存大小的同时保持推理性能至关重要[6]、[7]。减少KV缓存大小的一种方法是通过KV缓存压缩。例如,在[103]中,作者开发了一种2位量化算法,分别对每个通道的键缓存和每个标记的值缓存进行量化。该算法可以在几乎相同的推理准确性下减少2.6倍的峰值内存使用。此外,为了在压缩过程中保留层特定的信息,作者在[104]中引入了MiniCache。它将连续层中相同位置的高相似性键和值缓存合并为单个缓存,而那些具有重大语义意义的保持不合并。通过4位量化,这种方法可以在确保几乎无损模型性能的同时减少41%的内存使用。另一种方法是KV缓存驱逐,它采用驱逐策略动态选择KV缓存[137]、[138]。例如,在[105]中,作者提出了Scissorhands,它在固定预算内维持KV缓存内存使用。当缓冲区满时,从缓存中丢弃非影响力的标记。这种方法可以在不降低性能的情况下将KV缓存的推理内存使用减少5倍。类似地,在[106]中,作者在不同层动态分配不同的KV缓存预算,并战略性地选择重要的KV向量进行缓存。提出的方法可以在与完整KV缓存相比,仅使用12%的KV缓存的情况下保持模型性能。

B. 资源高效微调

与推理相比,在设备上进行LLM训练需要显著更高的内存和计算资源。例如,计算LLM OPT-13B[118]的梯度消耗的内存是推理所需内存的12倍[87]。然而,由于LLM微调所需的计算资源远小于全参数训练,因此在设备上部署LLM时广泛采用LLM微调。在本节中,我们将探讨在有限资源下有效微调LLM参数的技术。

  1. 参数高效微调(Parameter-efficient Fine-tuning, PEFT):PEFT已成为LLM微调的突出解决方案,它通过在微调过程中仅更新少量参数来减轻计算负担。流行的PEFT技术可以分为三种主要类型,即加性PEFT、选择性PEFT和重参数化PEFT,下面将详细阐述。

加性PEFT:为了减轻微调的计算负担,加性PEFT在LLMs中引入了参数极少的可训练组件,同时保持预训练LLM参数冻结。加性PEFT可以根据引入组件的局部性进一步分类为三种类型,即适配器调整、提示调整和前缀调整,如图4所示。

  1. 适配器调整(Adapter Tuning):首次由[107]提出,适配器调整通过在Transformer层中插入适配器模块并冻结其他参数。在这种方法中,只有在微调期间更新适配器。

  2. 提示调整(Prompt Tuning):在输入标记的开头添加软提示标记进行微调[108]。这种方法利用了LLMs基于前一个标记进行编码和生成的特性。

  3. 前缀调整(Prefix Tuning):在每个Transformer层的多头自注意力(MHA)的键和值中添加可训练的前缀参数[109]。尽管这种方法比提示调整增加了更多的可训练参数,但它允许直接修改LLMs内的表示,使LLMs能够更精确地响应特定任务。

选择性PEFT:尽管加性PEFT可以减少微调的参数数量,但它通过增加更多参数引入了额外的推理延迟。为了解决这个问题,选择性PEFT通过冻结大多数参数并仅更新一个较小的参数子集来保持模型架构。选择性PEFT可以分为非结构化选择性PEFT和结构化选择性PEFT,如图4所示。

  1. 非结构化选择性PEFT:非结构化选择性PEFT单独确定可训练参数的选择,这可以提高微调模型的性能[13]。例如,[110]中的作者将PEFT中的可训练参数选择问题重新表述为一个优化问题,并提供了一个二阶近似方法来解决这个问题。通过选择稀疏的可训练参数,稀疏微调模型的表现优于完全微调模型。

  2. 结构化选择性PEFT:结构化选择性PEFT选择规则的参数组合,例如特定模型层,以提高在设备上LLM部署的硬件计算效率[140]。例如,[111]中的作者提出了Structured Diff Pruning,它根据矩阵/偏置向量将参数分组,并有策略地移除一些组。然后,只有剩余组中的参数被更新,从而节省了LLM微调期间的计算资源。

重参数化PEFT:重参数化PEFT技术利用低秩矩阵来减少模型微调过程中的可训练参数数量。在LLMs的重参数化PEFT中最著名的方法之一是LoRA[112]。对于LLM中的预训练权重矩阵,LoRA引入了两个额外的可训练矩阵,其秩远小于预训练权重矩阵的秩,如图4所示。在微调过程中,预训练权重矩阵被冻结,只有新引入的两个低秩矩阵是可训练的。这种方法允许有效模型微调,因为更新低秩矩阵所需的计算能力远小于更新预训练权重矩阵。此外,LoRA不会增加任何额外的推理延迟,因为在推理期间LoRA的微调权重会合并到LLMs的原始权重中[13]。由于其显著的优势,LoRA启发了众多后续研究工作。例如,Quantized LoRA (QLoRA) [141]旨在通过结合量化技术与LoRA,最小化内存消耗,使得具有65B参数的语言模型可以在24小时内使用48 GB GPU进行微调。微调后的LLM在评估任务上达到了99.3%的ChatGPT性能,证明了QLoRA的有效性。

  1. 零阶优化(Zeroth-order optimization):零阶优化[142]是一种新颖的模型训练技术,它仅通过前向传播来估计梯度更新。这种方法大大减少了计算负担,因为前向传播,相当于推理,所需的计算资源远少于训练过程中的反向传播。具体来说,与流行的一阶优化器(如Adam)相比,零阶优化器在训练过程中不需要存储反向传播的中间结果,显著减少了LLM训练中的内存消耗。例如,在[87]中的作者提出了零阶优化器MeZO,它采用同时扰动随机近似来仅通过前向传播估计模型梯度,并使用估计的梯度来更新模型参数。与使用Adam进行微调相比,使用MeZO进行微调的模型在11个任务中的7个上表现出竞争力,同时只使用了1/12的运行内存,并且只造成了不到1%的准确性降低。此外,为了进一步提高LLM微调的效率,零阶优化技术可以与PEFT方法结合使用,如LoRA和前缀微调[87]。

IV. 应用场景

尽管LLMs可以应用于广泛的任务,我们专注于那些推动在网络边缘部署LLM的应用场景。因此,如图5所示,我们展示了四个关键的由LLM赋能的应用,同时集中讨论了三个方面:延迟要求、带宽成本和隐私要求。

移动健康:医疗保健是LLMs最有前途的应用之一。例如,Google的Med-PaLM 2是一个在医疗数据集上微调的LLM,能够回答医疗咨询[35]。最近,Fitbit和Google Research合作构建了一个LLM,以支持个性化的健康和健康功能,其目标是帮助人们从他们的移动设备生成的数据中获得摘要和建议[147]。具体来说,这个模型可以根据个人健身目标提供个性化的指导能力,如行动信息和指导。除此之外,医疗LLMs还可以协助医疗问题回答、诊断、治疗和医疗报告生成[148]。有了这些激动人心的应用,移动健康有以下服务要求,使其更适合在移动边缘部署LLMs:

  1. 延迟要求:一些由LLMs赋能的移动健康应用需要及时的警告消息以避免不良的健康后果。例如,最先进的跌倒检测算法可以实现37毫秒的延迟[149]。此外,紧急事故和常规检查的容忍音频/视频会议延迟分别为0到150毫秒和150到400毫秒[143]。LLMs还应该实现低延迟,以支持上述应用,即在跌倒检测后触发警告和生成建议。由于这些场景需要分析高维数据/特征以触发警告,将数据上传到云中心将经历长时间的延迟和高延迟抖动。

  2. 带宽成本:医疗LLMs通常具有多模态处理能力。例如,Google的Med-PaLM 2有一个多模态版本,称为Med-PaLM M,它处理丰富的数据模态,包括文本、影像、基因组学等,以解释受试者的生物指标。新兴的5G支持的移动健康应用还结合了医疗增强现实/虚拟现实(AR/VR),其要求范围从360度4K视频的10-50 Mbps[145]。将这些数据集中到云端进行训练或推理将消耗大量的网络带宽,这对于消费者和服务提供商来说成本很高。

  3. 隐私要求:健康信息被许多法律定义为最敏感的数据类别之一。例如,通用数据保护条例(GDPR)第9条将健康数据分类为特殊个人数据[150],其收集/处理需要数据主体的明确同意。鉴于严格的法规和公众对隐私意识的日益增强,移动健康应用需要在网络边缘部署LLMs以实现本地化数据处理。

人形机器人:通过利用LLMs,有巨大的潜力将类似人类的智能植入人形机器人中。这是之前在科幻小说中的一个版本。例如,Optimus是特斯拉正在开发的一种通用机器人人形,其最新版本Optimus Generation 2展示了流畅的动作,如跳舞和煎蛋。此外,通过结合LLMs和人形机器人,NVIDIA推出了Project GR00T,这是一个使用通用基础模型进行人形机器人学习的倡议,它采用多模态指令和过去的交互作为输入来生成机器人动作。有了LLMs的力量,人形机器人可以高效地执行众多任务,从在仓库中提供帮助到执行救援任务,再到在医院、老年社区和家庭中提供支持。然而,人形机器人应用也面临着严格的延迟和数据隐私要求:

  1. 延迟要求:机器人应用对延迟有非常严格的要求,以便机器人能够在不断变化的环境中迅速行动,并立即响应人类的指令。根据3GPP,5G远程控制机器人需要10-100毫秒的端到端延迟和2毫秒的中间数据上传延迟[79],这通常在云计算中是难以实现的,因为云计算引入的往返延迟通常超过100毫秒[151]。

  2. 带宽成本:机器人配备了多模态传感器,因此涉及向服务器进行密集的数据通信,包括视觉数据和高维特征。根据3GPP,考虑到分割推理,所需的上传数据速率从80 Mbps到12 Gbps不等,这取决于神经网络架构[79],如果部署在云端,将导致显著的带宽成本。

  3. 隐私要求:机器人应用的一个主要关注点,特别是在智能家居环境中,是数据隐私。机器人通过监控和与人互动,每天收集个人数据,涉及业主日常活动的高敏感数据。这需要在本地处理LLMs。

虚拟助手:LLMs可以基于部署在我们智能手机或个人电脑上的虚拟助手,极大地便利我们的日常生活。虽然早期的虚拟助手如Siri和Google Assistant专注于基本功能,如音频识别和网络搜索,但LLMs的出现已经改变了这一局面。先进的虚拟助手可以作为通用代理,从根本上改变我们与计算机和手机的交互方式,管理业务任务以及导航我们的日常生活。例如,由OpenAI的GPT-4驱动的Microsoft Copilot可以协助用户起草文档、电子邮件、演示文稿等[152]。虚拟助手还需要实时响应以增强用户体验,并进行本地化数据处理以保护数据所有权:

  1. 延迟要求:虚拟助手必须能够几乎实时地提供准确答案。根据NVIDIA,200毫秒的端到端延迟会导致人类感知到延迟并影响用户体验[144]。重要的是要注意,通信延迟要求会更严格,因为它只构成端到端延迟的一部分。此外,跨骨干网络的数据传输经常经历显著的延迟抖动,这可能会降低服务质量。这些因素突出了在移动边缘部署LLMs的重要性。

  2. 带宽成本:未来的虚拟助手处理文本、音频、图像和视频。例如,有时被称为GPT-4V的GPT-4支持图像输入以生成答案,例如根据输入的图像指导用户如何修理自行车。根据3GPP,分割AI图像识别可能需要上行数据速率为144 Mbps[146]。考虑到可能有数百万或数十亿用户,将这些数据分散到边缘进行处理可以大大减少带宽消耗成本。

  3. 隐私要求:虚拟助手帮助人们处理日常生活中不可避免地涉及个人信息的任务,如电子邮件交流、互联网搜索记录和位置信息。此外,使用LLMs创建电子邮件、文档或演示文稿可能会暴露公司的专有信息。这些担忧强调了在边缘设备上处理数据以维护隐私和保护数据所有权的重要性。

自动驾驶:目前大多数自动驾驶解决方案主要依赖于模块化方法,将驾驶分为感知、预测和规划等独立组件。这种模块化设计在需要复杂和类似人类推理的任务上具有固有的限制,而LLMs在这方面表现出色[153]。例如,在十字路口遇到施工工人时,LLMs已经显示出推理和做出明智决策的能力,关于正确的路线选择。在汽车行业,Ghost Autonomy从拥有GPT模型的OpenAI公司获得了500万美元的投资,目的是将大规模和多模态LLMs引入自动驾驶,以处理罕见和复杂驾驶场景的长尾问题[154]。在中国,吉利汽车开发了一个LLM用于自动驾驶,提供诸如车辆与外界的语音交互和娱乐功能等服务[155]。尽管相关开发仍处于早期阶段,但可以预期LLMs将很快为消费者提供车内和自动驾驶服务。

毫无疑问,自动驾驶依赖于车内和边缘计算来支持实时要求和隐私保护。

  1. 延迟要求:自动驾驶是最关键和对延迟最敏感的应用之一[156]。根据3GPP,自动驾驶案例可能有10毫秒的端到端延迟要求[79]。为了对快速变化的车辆环境生成实时响应和动作,部署在云端的LLMs不适合,这使得将LLMs移动到网络边缘变得至关重要。

  2. 带宽成本:自动驾驶车辆配备了多模态传感器,包括多个摄像头和激光雷达,每天可产生高达4TB的数据[157]、[158]。将大量车辆的此类数据集中到云端可能会导致骨干网络和云端过载。此外,根据3GPP,在分割推理场景中,不同模型架构的上行数据速率范围从80 Mbps到12 Gbps[79]。

  3. 隐私要求:将车辆数据上传到云端不可避免地会导致位置隐私泄露,这被广泛认为是敏感的个人数据。在车辆或边缘处理数据可以增强最终用户的数据隐私。

V. MEI4LLM 概述

推动LLMs向网络边缘发展是持续的趋势,这得益于第IV节中的关键应用和第III节介绍的资源高效技术。通过在网络边缘部署LLMs,边缘设备可以与边缘服务器协作学习与推理,这大大缓解了边缘设备的资源匮乏问题。与6G时代"NET4AI"(网络为AI服务)的愿景一致,本节介绍了支持LLMs部署的MEI框架,称为MEI4LLM,如图6所示。MEI4LLM包括以下基本组件。

A. AI原生架构下一代边缘网络将以端到端的方式支持AI服务。6G的目标应该是以最小的通信、计算、存储和能源需求,支持包括LLMs在内的AI,提供卓越的性能。因此,6G通常设想为"面向任务"的架构,而不是最大化吞吐量或最小化延迟,设计目标可以是通过实施最优的分布式计算、特征提取和资源分配方案,在多样化的资源约束下,最小化LLMs输出标记的交叉熵。为了实现这一目标,网络虚拟化对于提高资源利用率、灵活性和管理性至关重要。遵循软件定义网络的设计原则,MEI4LLM具有一个中央控制器,协调全网范围内的计算资源和数据传输,具有解耦的控制和数据平面。通过收集全球网络知识,例如LLMs的准确性、各种量化水平、用户对LLM服务的要求、信道条件、用户的电池状态和计算资源的可用性,控制器在分布式边缘计算系统中分配和协调模型训练/推理和交付,边缘路由器和服务器之间交换中间破碎数据(即中间激活和反向传播梯度)、模型参数或用户数据。进一步的边缘网络将发展为"神经边缘"[159],神经网络层分布在边缘节点上,进行协作计算。类似于拥有许多GPU以支持大规模LLMs的云数据中心,MEI4LLM必须具有灵活的模型分割,以支持在分布式边缘设备和服务器上进行训练和推理。空中接口和网络设计应该原生支持包括LLMs在内的AI模型的联邦学习、分割学习和分割推理。由于模型训练和推理对数据包错误具有鲁棒性,面向任务的无线传输,例如在切割层的破碎数据,可以通过适当的错误控制进行,以实现最佳效率-可靠性权衡。大规模模型的最佳模型分割、放置和数据路由应该在边缘网络上得到协调支持。最后,可以实现信息中心网络,以确保跨边缘网络的模型、特征和数据的无缝传输,有效交付LLMs。在这方面,MEI4LLM应该支持LLM参数块命名和基于名称的传输协议。通过为每个LLM参数块分配名称,MEI4LLM架构中的中央控制器可以将参数请求转发到其缓存位置,减少在网络和最终用户之间交付大规模模型的延迟和带宽消耗。

B. 参数共享的LLM缓存和交付考虑到边缘设备的有限存储容量和频繁的模型微调,应将感兴趣的LLMs及时地从它们的位置传递到需要它们的地方。此外,考虑到RAG,外部知识源也应缓存在网络边缘,确保一旦LLM应用程序需要,能够及时获取数据/知识。模型/数据交付可以通过有线回传或无线接入网络进行。LLMs的缓存和交付必须利用参数块可以在各种下游LLMs之间共享[112],甚至在同一个LLM内重用[38]这一独特特性,通过减少重复LLM参数块的缓存和交付成本,提高边缘网络的存储和通信效率。为了实现快速模型交付,MEI4LLM可以构建一个查找表,为LLM参数块分配名称,以便于内容搜索和管理,遵循信息中心网络的原则。通过这样做,MEI4LLM范式将LLMs放置在适当的地点,从附近的边缘服务器检索感兴趣的LLMs,并启用LLM参数块到移动用户的路由/多播。

C. 分布式LLM训练(微调)预计6G MEI系统可以高效地微调LLMs,以适应当地环境。当推理准确度下降或在一定时期后当地环境发生变化时,可以触发边缘LLM微调。例如,由LLMs支持的虚拟助手应定期微调,以更好地适应新闻媒体、顶级当地餐厅和热门景点的新趋势,从而提高决策和与用户的交互。由LLMs支持的移动健康应用程序应个性化,以提供更好的预测和健康或健身建议。在下一代移动网络中,边缘训练对LLMs必须回答两个问题:1) 如何保护用户隐私和数据所有权,2) 如何通过边缘节点的协作支持大规模模型训练。为了增强用户的数据隐私,联邦学习(FL)和分割学习(SL)是两种有前景的分布式学习框架,可以在网络边缘实现。具体来说,FL允许边缘设备在本地训练模型,同时只与边缘服务器共享模型参数以进行聚合,从而利用集体智慧而无需共享个人数据。或者,SL及其变体分割联邦学习(SFL),可以实现设备-服务器共同训练而不共享本地原始数据,特别适合于边缘设备的大规模LLM微调[161],因为模型分割允许在不同的边缘节点之间平衡工作负载。为了有效支持密集的训练,可以结合第III节详细介绍的各种资源高效训练技术与FL或SL。这些讨论将在第VII节提供。

D. 分布式LLM推理为了适应资源密集型的LLMs,边缘服务器和边缘设备必须以协调的方式执行分布式推理,这取决于通信计算工作负载和隐私要求。边缘推理有几种不同的方式。服务器端推理要求用户将原始数据上传到服务器。这种方法消除了边缘设备的计算负担,但可能违反用户的隐私要求。例如,多模态LLMs可能在家庭环境中收集敏感的音频和视频数据,用户通常不愿意共享。相反,设备端推理保护隐私并消除通信成本,同时将繁重的计算工作负担施加在边缘设备上。分割推理是3GPP 5G技术规范[79]中的一个关键AI推理框架,介于两者之间,边缘设备和服务器持有AI模型的部分。分割推理涉及将边缘设备的特征上传到边缘服务器进行共同推理。为了促进LLM推理,MEI4LLM可以根据通信计算资源状态和隐私要求,适当选择这些方案,如第VIII节详细阐述。

VI. 边缘缓存和交付LLMs

边缘LLM缓存和交付在LLMs的训练和推理中发挥着不可或缺的作用,是边缘LLM部署的基石。因此,我们首先讨论边缘缓存和交付,然后在后续部分介绍边缘训练和推理。与传统的边缘服务/内容缓存和交付相比,边缘LLM缓存和交付的主要区别在于利用参数共享性,这在LLMs中非常普遍,目的是提高边缘网络的存储和通信效率。虽然参数共享性在传统DNNs中也存在,但由于PEFT技术的广泛采用,它在LLMs中更为普遍和重要,需要我们特别设计关注。下面,我们将介绍利用LLMs这一特性的技术。表III为读者提供了边缘LLM缓存和交付相关工作的概述。

A. 边缘LLM缓存

边缘模型缓存可以通过提前将AI模型分发到无线边缘服务器来实现低模型下载延迟。与计算卸载的服务放置不同,边缘模型缓存侧重于缓存AI模型以供最终用户从边缘服务器下载。AI模型缓存的设计目标是在服务等级协议(QoS)要求内为更多用户提供模型[160]、[165]。这种范式使用户能够直接从边缘服务器获取AI模型,而不是访问远程云数据中心,这会产生过度的下载延迟[162]、[164]。然而,实施边缘LLM缓存面临几个挑战:

  1. 有限的LLM缓存存储容量:服务提供商旨在将尽可能多的流行LLMs放置在边缘服务器上,以提高缓存命中率并减少用户的模型下载延迟。然而,LLMs的巨大规模对边缘服务器上的存储构成了重大挑战。

  2. 高LLM边缘缓存(重新)放置成本:随着时间的推移,先前缓存的LLMs可能不再符合不断变化的用户请求。为了解决这个问题,服务提供商可能会更换边缘服务器上的LLMs,以更好地适应最新的请求。然而,这些大规模模型的放置导致了相当大的通信开销,并给移动回传网络带来了巨大负担。

下面,我们介绍参数共享模型缓存以解决上述挑战。

  1. 参数共享LLM缓存:可以采用参数共享模型缓存来提高网络边缘的存储和传输效率。如第三节所讨论的,PEFT(如LoRA)被广泛采用,以使LLMs适应下游任务。在LoRA中,预训练的LLM参数被冻结,只有新引入的参数是可训练的,通常占原始LLM参数的不到1%。因此,使用LoRA针对下游任务微调的各种LLMs的大多数参数都是从预训练的LLMs共享的,这应该被利用来显著提高缓存效率。以LoRA和GPT-2为例。图7展示了即使在GPT-2大型模型的99.97%参数是预训练的GPT-2大型模型的冻结参数时,推理性能几乎保持不变。基于这一观察,在[162]中,我们提出了一种AI模型放置策略,称为TrimCaching,通过利用AI模型(特别是LLMs)的参数共享属性,在服务器存储容量和服务延迟约束下最大化缓存命中率。在TrimCaching框架中,只在一个边缘服务器上缓存跨LLMs的共享参数块的一个副本,从而提高存储效率,如图8所示。与不考虑LLMs间参数共享的独立缓存策略[166]、[167]相比,TrimCaching策略可以显著提高缓存命中率,如图9所示。虽然多小区场景下的参数共享模型缓存已经在[162]中进行了研究,但这种范式可以扩展到考虑蜂窝网络中的许多不同场景,如集中式RAN(C-RAN)和异构网络(HetNets)。此外,可以根据用户移动模式开发移动感知边缘缓存。

  2. 边缘LLM缓存替换:由于模型的受欢迎程度会随着时间而变化,边缘缓存中的另一个基本研究问题就是LLM替换。通过用新数据替换过时的内容,边缘服务器可以不断地用新内容刷新它们的缓存,以满足不断变化的用户请求[169]。两种最经典的替换策略是基于最近性和频率的策略,它们分别移除最近最少使用(LRU)对象和最少频繁使用(LFU)对象,然后用更新的内容替换它们。然而,这些策略没有考虑到跨LLMs的共享参数块以及不同边缘节点之间的协作缓存。提高替换性能的一个方向是,在一定时间后重新进行集中式主动缓存,例如[160]中的方案,但在高用户流动性下,这些方法可能涉及高系统复杂性和高通信成本。另一个方向是开发分布式算法,通常基于马尔可夫决策过程或强化学习,以在不知道其他边缘节点的完整信息的情况下做出替换决策[170]。

  3. 针对RAG的边缘缓存:如第二节A4所述,将LLMs与RAG集成,使LLMs能够从外部知识源检索相关信息,对于生成可靠和最新的响应而不重新训练/微调至关重要。然而,由于从远程云检索信息可能耗时,应将最受欢迎的外部知识缓存在网络边缘,以使LLMs能够获取最真实、准确和最新的内容。有趣的是,这个边缘缓存问题自然不同于传统的缓存问题,因为缓存应该通过考虑LLMs的训练状态或内部知识来优化。具体来说,如果LLMs已经能够记住或容易推断出某些内容,这些知识可以从外部知识源中移除,以节省网络边缘的存储空间,从而提高缓存外部知识源的存储效率。此外,边缘服务器可以缓存其关联用户经常请求的特定外部知识源,这可以显著提高不同地区用户响应的QoS。另一方面,针对RAG的边缘缓存与即时LLM微调紧密耦合,即我们需要选择哪些数据来更新过时的LLMs,以及哪些数据在边缘服务器上缓存RAG。考虑到这一点,值得研究一个联合LLM微调和知识源缓存问题,在RAG的背景下,以提高LLMs在延迟约束下的可靠性,考虑到从边缘/云服务器检索外部知识源的延迟以及通过向LLMs提供新数据进行微调的成本。

B. 边缘LLM交付

从缓存地获取模型到最终用户的重要步骤是延迟高效的模型交付。这个过程包括在回传/骨干网络内进行模型路由和通过无线接入链路进行模型下载,面临以下挑战:

  1. 过度的回传/骨干交付延迟:当请求的LLMs不在相关边缘服务器上缓存时,需要在边缘网络内进行LLM路由。然而,与传统AI模型相比,LLMs的模型尺寸显著更大。因此,LLM路由需要在适度的回传流量中在边缘服务器之间进行。

  2. 显著的无线下载延迟:AI模型下载需要在低延迟下完成,以满足最终用户的QoS要求。正如3GPP所设想的,自动驾驶应用要求在1秒内完成AI模型下载[79]。然而,LLMs的巨大模型尺寸阻碍了快速模型下载,使其极难满足严格的服务延迟要求。

这些挑战需要以下解决方案:

  1. 参数共享回传/骨干模型交付:为了减少回传/骨干网络内的模型交付成本,可以开发利用LLMs间参数共享的参数高效模型交付。如图10所示。当一个边缘服务器不缓存LLM但缓存其他具有共享参数块的LLM时,只需要传递缺失的LLM参数块,从而减少数据交付成本。例如,对于使用LoRA微调的LLMs,如果共享的骨干已经在边缘服务器上缓存,则只需要传输特定的LoRA参数。此外,在传递参数块时,参数块可以从不同的服务边缘服务器获取。只要所有需要的参数块到达目的地(例如,请求的服务器或用户),就可以组装整个LLM。因此,考虑到多跳回传/骨干通信网络,可以开发缓存感知数据路由,利用重叠参数块的多播来提高网络吞吐量。

  2. 参数共享无线模型下载:为了减少从基站(边缘服务器)到用户的无线模型下载成本,必须考虑参数共享无线模型下载。如图11所示,为了降低下载延迟,关键思想是多播可重用参数块,从而实现及时下载。在[163]中,作者提出了一个模型多播和组装框架,利用AI模型间的共享参数,即论文中考虑的Transformers。该框架在多播共享参数块给多个请求用户的同时,对每个用户单独多播特定的参数块。然后用户组装下载的参数块以获取所需的LLM。参数共享和下载延迟之间存在权衡。尽管具有更多共享参数块的模型可以以更低的延迟下载,这也将降低模型在下游任务中的性能。为了减少总模型下载延迟并确保QoS要求,提出的框架旨在在下游推理任务的准确性QoS要求内,最大化不同模型间相同参数块的发生。参数共享LLM交付/下载也可以与各种LLM压缩技术集成。以量化为例;通过将LLM权重压缩为低位宽,可以以低延迟完成LLM下载[164]、[171]。然而,如第三节A所示,为LLMs设置统一的量化位宽会显著降低推理性能,因为并非所有权重对最终输出的贡献都相等[90]。因此,可以根据权重重要性为LLMs的权重分配非均匀位宽[172]。例如,对应于较大激活或较高量化误差的权重可以在下载前以高位宽量化,这可以保留量化LLMs的性能[90]、[172]、[173]。此外,量化还应根据各种下游LLMs的参数块的受欢迎程度/共享性进行优化。通过整合LLM压缩方法,设计LLM交付/下载时,应联合考虑无线信道条件、权重重要性、参数块共享性和模型性能。

  3. 联合参数共享模型缓存和交付:参数共享模型缓存和交付在有线网络、无线网络或两者混合中紧密耦合。一方面,模型放置显著影响回传和无线链路上的边缘网络流量。另一方面,无线资源分配和数据路由影响模型放置的最优决策。考虑到跨LLMs的共享参数,这个联合问题与现有的缓存和交付方案有显著不同,因为共享参数的各种内容以及一个模型可以通过从不同源节点获取各种块来恢复。在多跳网络中,可以通过考虑参数共享性和共享模型部分的多播来研究联合缓存和数据路由问题。在缓存辅助的蜂窝网络[174]中,可以联合优化模型放置、前传/回传成本和无线资源分配,以促进快速AI模型下载到边缘设备。

C. 教训

由于LLMs的巨大规模,边缘缓存和交付面临高度挑战。为了缓解这些问题,上述技术旨在1) 只传输模型的一小部分(即任务特定的参数块),2) 在通信网络中存储或多播共享参数块,3) 联合优化LLM能力和外部知识源。所有这些特性都源于利用LLMs中的"可重用知识"来尽可能节省带宽和存储资源。显然,这些新特性将产生丰富的研究问题集,特别是考虑到边缘网络中的各种场景和多维资源管理。例如,可以探索包括多小区无线网络、异构无线网络以及无线和有线网络组合在内的不同网络架构,以及优化各种无线电资源,包括频谱资源和传输功率。指导设计原则是根据上述关于可重用知识的原则,在最小化资源利用的同时,优化缓存和交付后LLMs的可用性。

VII. 边缘训练LLMs

边缘训练在网络边缘执行模型训练,以从数据源中提取智能。边缘LLM训练与传统边缘训练的主要区别在于AI模型的大规模,可能太大而无法适应边缘服务器,以及在无线网络上优化PEFT。如图12所示,我们通过四类讨论边缘LLM训练:集中式边缘学习、联邦边缘学习、分割学习和分层协作学习。为了方便读者,表IV总结了边缘LLM训练的相关工作。

A. 集中式边缘学习

在MEI系统中最直接的模型训练方法是从边缘设备收集数据并在边缘服务器上进行模型训练。虽然边缘服务器通常比边缘设备更强大,但集中式边缘学习面临几个关键挑战:

  1. 边缘服务器的重大计算负担:LLM训练或微调需要大量的计算资源和存储/内存容量。例如,以FP32训练Llama-2 7B的经验需求112 GB的GPU内存[195],这对于边缘服务器来说可能具有挑战性,因为一个强大的H100 GPU只有80 GB的内存。

  2. 原始数据上传的过度通信开销:考虑到多模态原始感知数据,需要将大量数据上传到集中式数据中心。这些挑战可以通过以下解决方案来克服。

  3. 扩展LLM训练:扩展训练对于集中式边缘训练中的LLM训练至关重要。由于内存和计算限制,单GPU上训练大规模LLMs极具挑战性。因此,在集中式边缘训练的背景下,使用分布式计算和内存资源(如边缘服务器上的多个GPU)进行扩展可以加速训练过程,使在边缘网络中训练LLMs成为可能。扩展LLM训练可以分为两种主要方法:并行训练和GPU内存优化,下面将详细阐述。

并行训练:考虑到LLMs的极端训练工作量,必须采用并行计算来利用跨边缘节点的资源,将LLM训练分割以减少训练延迟并共享所需的内存空间。三个最突出的并行计算策略是数据并行、流水线并行和张量并行。

GPU内存优化:有效的GPU内存优化,如Zero Redundancy Optimization (ZeRO),可以采用以减少边缘LLM训练中分布式GPU的内存使用[179]、[180]、[198]。在[179]中,Rajbhandari等人开发了ZeRO,其中每个处理器在训练期间只持有优化器状态、梯度和参数的一部分,其余的可以根据需要从其他数据进程中获取,从而减少每个处理器所需的GPU内存空间。为了进一步减轻GPU内存的压力,在[180]中,作者提出了ZeRO-Offload,它通过利用CPU内存有效地优化GPU内存。ZeRO-Offload在训练期间在GPU上划分梯度和优化器状态,并将它们卸载到CPU内存中。在反向传播期间,梯度在GPU上计算和平均,每个GPU将其所属的部分平均梯度卸载到CPU内存中。一旦CPU上有了梯度,优化器状态就直接在CPU上更新,然后才收集回GPU。

  1. 扩展LLM训练的资源管理:与基于云的方法不同,资源管理在并行计算LLMs的网络边缘起着重要作用。尽管前述基于云的方法可以应用于相互连接的边缘服务器,但必须仔细考虑边缘服务器的异构通信和计算能力,以进行系统优化,这在大规模GPU集群中通常被过度简化。例如,在流水线并行中,将子模型放置在多个边缘服务器上进行LLM训练时,中间的破碎数据应该在边缘服务器之间通过显著异构的有线/无线通信链路交换。在这方面,模型分割和放置应该基于计算-通信资源约束进行明智的优化。事实上,类似的问题已经被考虑用于多跳分割推理[199]、[200],其中模型分割和/或放置通常被映射到图构建问题,可以通过考虑不同分割和放置选择的通信-计算延迟的最短路径问题[200]或最小割问题[199]来解决。不幸的是,这些问题并不直接适用于像流水线并行和张量并行这样的大规模模型的并行训练,因为在边缘网络中。例如,与通常一次处理一个输入数据的多跳推理问题不同,模型训练的流水线并行考虑处理一批训练数据样本,这些样本可以被分成多个微批次作为输入形成流水线过程。因此,端到端延迟由处理一个微批次数据样本的延迟和处理整个批次的所有微批次的流水线延迟组成。这些特点将大规模模型的并行训练与边缘计算网络中的推理问题区分开来。此外,通过利用LLMs的特殊结构,大多依赖于Transformers,工作负载分割问题可能被简化,因为它由具有相同大小的中间数据输出的重复Transformer块组成。此外,模型分割、张量分割和子模型/层放置可以与无线电资源管理问题联合优化,如频谱分配和数据路由[201],以减少传输延迟并减轻网络拥塞。

  2. 重要性感知的标记上传:集中式边缘训练LLMs的另一个挑战在于输入标记上传中的通信瓶颈。特别是,多模态LLMs涉及从边缘设备上传大量多模态数据,如文本、音频、高维图像/视频和激光雷达,这可能导致网络拥塞和对延迟敏感应用的不可接受的延迟。为了解决这个问题,可以扩展边缘学习中的重要性感知训练数据传输方案到LLMs的背景中。在[181]中,作者展示了通过为具有更高重要性的训练数据样本分配更多的无线电资源,可以提高训练期间的收敛速度和模型精度。此外,在[182]中,通过考虑信噪比和数据不确定性指标,适当的用户调度可以加速模型收敛。在LLMs的背景下,有两个额外的特性可以进一步利用以实现高效的标记上传。首先,与其他类型的训练样本(即仅图像)相比,LLMs中的输入和目标标记的大小可以显著变化,这意味着在训练中对输入/目标标记进行批处理时应考虑它们的长度。例如,将长序列与短序列一起训练可能不是明智的选择,因为它可能导致GPU资源的空闲,考虑到短序列可以很快完成。值得注意的是,服务器端的批处理与从边缘设备上传标记的调度紧密耦合。其次,标记的重要性水平可以通过利用不同模态之间的相关性来获得;例如,文本数据可能揭示图像训练的重要部分。因此,探索从边缘设备选择重要数据跨多个模态,如文本和图像,以提高LLMs的准确性,同时最小化整体数据传输开销是很有前景的。

B. 联邦边缘学习

集中式边缘学习允许边缘服务器直接访问边缘设备的个人数据,这引发了重大的隐私问题,并可能违反数据收集法规。因此,迫切需要在网络边缘采用FL进行LLM训练[202]。在FL中,客户端通过将本地模型更新发送到边缘服务器进行聚合,共同训练全局模型[203]、[204]。当FL遇到LLMs时,需要解决一些关键挑战:

  1. 设备上的过度训练工作量:与深度学习加速器的内存带宽(高达7.8 TB/s)相比,嵌入式边缘设备的内存带宽仍然要低得多(高达0.2 TB/s)[205],导致严重的训练时间惩罚。

  2. 大量模型传输流量:从大量边缘设备上传LLMs到边缘服务器进行模型聚合,给电信基础设施带来了沉重的通信负担,对移动用户来说可能非常昂贵。

  3. 资源异构性:在FL中通常观察到落后者问题,其中训练时间由具有最稀缺通信-计算能力的最慢客户端确定。

为了缓解这个问题,应该考虑集成通信-计算资源分配,以满足时间敏感的FL任务的要求。因此,我们提出了以下策略来解决上述挑战。

  1. 参数高效联邦LLM微调:为了解决上述挑战,可以采用参数高效联邦LLM微调。参数高效联邦LLM微调将PEFT集成到FL中,使每个客户端只更新和上传一小部分参数,从而减少通信和计算开销[183]、[184]、[206]–[209]。在[207]中,Zhang等人将参数高效调优应用于FL中的LLMs训练。作者展示了参数高效联邦调优方法在训练LLMs中的有效性以及它们防御数据推断攻击的能力。在[183]中,Jiang等人提出了一种在有限通信和计算资源约束下运行的低参数FL方法。通过结合LoRA和FL,边缘设备只更新并上传LoRA参数到边缘服务器,而不是LLMs的全部参数。一些工作推动了FL在LLMs中的实用部署。例如,FederatedScope-LLM[184]提供了PEFT算法和多功能编程接口,以低通信和计算成本促进LLMs的FL,无需访问完整模型,非常适合封闭源LLMs。此外,在[208]中,开发了一个工业级FL框架,称为FATE-LLM,通过PEFT方法,如LoRA和P-Tuning-v2[210],支持LLMs的高效FL。联邦LLM提示调整是另一种参数高效联邦LLM微调技术,通过在FL过程中优化边缘设备上的少量任务特定提示向量来适应LLM。例如,MetePFL[185]专注于解决分布式传感器在现实世界气象预测任务中的通信和计算效率挑战,通过提示调整实现。从通信角度来看,提示调整只调整一小部分特定任务的参数,显著减少了聚合所需的参数大小。例如,如果一个模型有数亿个参数,一个提示可能只包含几千个参数,即整个模型大小的0.01%到0.1%[108]。从计算角度来看,提示调整只需要更新LLMs的一小部分参数,使资源有限的边缘设备能够参与。例如,FedPepTAO[186]设计了具有自适应优化的参数高效提示调整,在FL中专注于更新适当的提示层中的参数,以减少传输的参数数量并优化计算效率。此外,为了利用LLMs的强大表示能力,同时在FL中实现客户端的高效模型个性化,作者在[187]中提出了pFedPG。服务器端的个性化提示生成模块根据从客户端收集的优化方向信息为所有客户端创建个性化提示。然后,客户端更新他们的客户端特定提示以实现个性化。此外,这种方法确保只有必要的和针对性的参数被更新,进一步优化了通信和计算效率。

  2. FL中LLMs的资源管理:在LLMs的背景下,优化PEFT在无线网络上的FL仍然是一个重要的未来方向,目前仍处于起步阶段。原理是通过考虑无线信道条件和模型训练状态来调整可训练参数的比例。直观地说,更大的可训练参数集可以带来更好的训练性能,同时也会引入更大的通信和计算延迟。在[211]中,基于模型参数在模型收敛之前逐渐稳定的观察,Chen等人提出了一种自适应参数冻结方案,在训练过程中冻结非同步稳定参数,消除了同步完整模型的需要。然而,这项工作没有考虑无线网络中的动态信道条件。考虑到LLMs中的PEFT技术,如LoRA,可训练矩阵的秩在很大程度上影响训练准确性和FL中的通信-计算延迟,如[202]所示。因此,一个重要的研究问题是如何联合优化LoRA中LLMs的秩和无线网络上FL的无线电资源分配。

C. 分割学习

虽然FL可以与各种高效微调技术结合用于训练LLMs,但对于轻量级边缘设备来说,它仍然非常资源密集。具体来说,像GPT-3或BERT这样的模型包含数十亿个参数。即使是采用PEFT,边缘设备(如智能手机或IoT设备)也难以在本地执行计算密集型的参数更新[212]。为了解决这些问题,SL可以是边缘网络中LLM训练的有前景的范式,它通过边缘服务器和边缘设备的协作共同训练大规模模型[213]。SL允许边缘服务器从边缘设备接管主要的训练负载,基于模型分割[214]。自从SL发明以来,它已经被应用于各种场景,如医疗保健[215]、[216]。与FL不同,SL只在边缘设备上放置一个子模型进行训练,从而大大减少了边缘设备的负载。传统的SL涉及边缘服务器和边缘设备之间的顺序交互,这是由于空闲边缘设备的等待时间而成为一个主要瓶颈。SL的变体,包括并行分割学习(PSL)[217]、[218]和SFL[219]、[220],可以应用以实现并行训练,同时利用多个边缘设备的资源。显然,与FL一样,SL也可以与第三节中的PEFT或其他资源高效技术集成,以进一步减轻边缘设备的负载。例如,边缘设备只需要执行前向传递,冻结客户端参数,大大减少了计算工作量和内存使用。

尽管SL可以通过利用边缘服务器来促进LLM训练,但在采用SL进行LLM训练时仍然存在几个挑战。

  1. 高维破碎数据传输的通信成本:尽管模型分割利用了分布式计算资源,并减轻了边缘设备的计算负载,但上传破碎层破碎数据的通信开销可能是一个主要瓶颈。考虑到GPT-3 Medium和具有100个数据样本的边缘设备,每个数据样本有1024个标记,一轮训练中破碎层的总破碎数据量大约为400 MB[42]。

  2. 目标标记的隐私泄露:虽然通常很难基于SL中接收到的破碎数据恢复LLMs的原始训练数据[221],但存在目标标记泄露(即标签泄露)的隐私风险。在SL过程中,一个常用的LLM分割方案是将具有输入模块的子LLM放在边缘设备上,将具有输出模块的子LLM放在边缘服务器上。在这种情况下,边缘设备需要将输入数据的目标标记上传到边缘服务器以进行LLM训练,导致目标标记泄露。下面,可以采用几种方法来解决上述挑战。

  3. SL中的标记表示减少:首先,可以利用重要性感知的标记表示剪枝来消除上传的破碎层中不重要的标记表示。在[188]中,边缘设备可以基于在线蒸馏方法选择性地向服务器发送最具信息量的破碎数据,以执行SL。这种方法通过减少与基准相比的通信成本约50%,提高了性能。其次,可以在传输前采用破碎数据压缩。在这方面,量化可以被采用以有效减少SL/SFL/PSL中的通信开销[189]。具体来说,量化可以将浮点值(通常为32位)转换为低精度表示,从而提高SL中破碎数据传输的效率。这些方法可以在LLMs的背景下采用,以减少SL过程中上传的数据量。2) LLMs的U形SL:在SL框架中,另一个常见问题是真实目标标记的隐私泄露。通常,边缘设备需要将训练样本的目标标记传输到服务器以计算损失函数,导致严重的隐私问题。例如,LLMs的真实目标标记可能是患者的疾病类型和健康建议,这被认为是敏感的个人数据。为了解决这个问题,可以采用U形SL用于LLMs。U形SL[222]、[223]将输入模块的头部神经层或Transformer块和输出模块的尾部层/块留在边缘设备上,而只有中间层/块放在边缘服务器上,从而有效地保护了标签隐私。当将这种方法应用于LLM训练时,可以将计算敏感的解码器放置在边缘服务器上,而将具有文本输入模块的底层和具有文本输出模块的顶层放置在边缘设备上[190],从而更好地保护隐私。3) SL中LLMs的资源管理:为了有效和高效地支持SL中的LLMs,需要联合设计SL和无线电资源分配。这种SL和无线电资源分配的联合问题已经被研究用于SFL或PSL[217]、[220]。在[217]中,我们提出了一种高效的PSL方法,通过采用最后一层反向传播梯度聚合来减少边缘服务器在服务多个客户端时的计算、通信和内存负载。然后,我们设计了联合模型分割和信道分配策略,以缓解无线PSL中的落后者问题。然而,这种优化问题通常是整数规划,由于模型分割决策,当边缘设备数量大时可能是NP-hard和计算密集型的[224]。具有Transformer的LLMs的特点是,Transformer块通常在编码器或解码器内重复(与具有不同输出大小的CNN层不同),这使得最优优化问题更容易解决。这提供了一个机会,利用更有效的算法设计最优的无线电资源分配和模型分割策略。特别是,当用户端计算能力是限制因素时,较浅的模型分割点可以减少通信-计算延迟,因为不同切割块的通信成本保持一致。然而,重要的是要注意,较浅的分割点可能会导致原始数据的隐私泄露增加;因此,分割层不应侵犯用户的隐私要求。总之,可以利用基于Transformer的LLMs的独特结构,开发在SL框架下有效和高效的模型分割和资源分配策略。

D. 分层协作学习

分层协作学习范式可以促进大规模的LLM训练[8]、[225]、[226]。与之前的边缘仅范式相比,分层协作学习通过利用云、边缘服务器和边缘设备之间的协同作用,提供了改进的灵活性,以适应不同的任务复杂性和资源可用性。例如,计算密集型的训练任务可以卸载到云服务器,而相对容易的任务可以保留在网络边缘以节省通信延迟/带宽。此外,分层协作学习对于LLMs在全球范围内学习全局知识是不可或缺的,其中LLM更新可以在中央云中同步。如下所述,分层协作学习可以分为三类:云-端协作、云-边缘协作和云-边缘-端协作。

  1. 云-端协作:云和边缘设备可以共同训练LLMs。为了减少边缘设备的计算工作量并增强用户隐私,Gao等人在[227]中提出了一个名为DLoRA的分布式PEFT框架。该框架在边缘设备上维护和微调个人PEFT模块,同时在云端存储LLMs的冻结参数。通过交换激活和梯度,边缘设备和云端可以共同训练LLM。此外,为了减少边缘设备的通信开销,作者采用了Kill and Revive机制,动态识别和微调最相关和最重要的PEFT模块。在[191]中,Wang等人提出了一个用于多模态LLMs的云-端协作学习框架,其中云端有一个较大的多模态LLM,而边缘设备有一个较小的多模态LLM。边缘设备,如机器人,将多模态数据上传到云端,以执行KD训练适配器,然后下载到边缘设备。为了减少数据上传中的通信开销,作者采用了不确定性引导的标记采样策略,使边缘设备只上传最具信息量的标记到云端。

  2. 云-边缘协作:云-边缘协作LLM训练使云端和边缘服务器能够共同训练LLMs。一方面,LLMs可以最初在云端进行预训练,然后通过在边缘服务器上进行额外的微调来提高性能。在[8]中,Xu等人提出了一个用于生成性AI模型的云-边缘协作训练和微调框架,其中模型在云端预训练以学习通用特征,然后使用存储在边缘服务器上的上下文感知数据进行微调以实现定制化。另一方面,边缘服务器可以在当地训练LLMs,然后将模型更新发送到云端进行知识共享,例如FL框架中的模型聚合,这可以提高LLMs的通用性。在[192]中,多个边缘服务器的边缘模型使用门控神经网络和线性投影连接集成成一个适用于多任务和多模态学习的大规模模型。云端使用云端公共数据集训练这个大规模模型,然后将特定任务的轻量级模型分发回边缘服务器进行个性化微调。

  3. 云-边缘-端协作:具有三级架构的云-边缘-端协作学习带来了更多分布式计算资源和资源管理的灵活性。在[193]中,作者提出了一个分层FL框架,其中边缘服务器聚合它们各自的关联端用户本地训练的模型,云端聚合来自不同边缘服务器的模型。此外,为了减少分层FL框架中的通信成本,作者在[194]中采用了模型量化来压缩模型大小,以实现高效的模型聚合,其中提供了一个收敛上界以优化聚合间隔。分层协作学习范式适用于LLM训练。由于某些LLM应用中的原始数据,如医疗保健,高度敏感,用户可以在保持私有数据在本地设备的同时,通过云端和边缘服务器的帮助参与训练过程[228]。然而,尽管有这些优点,模型在云端、边缘服务器和边缘设备之间的传递和数据传输必须得到适当处理,因为传递LLMs的模型参数会产生显著的通信延迟,特别是在从云端到边缘服务器的链路上。

  4. 分层协作学习中LLMs的资源管理:在分层协作训练中,模型聚合间隔(在FL或SFL中)和模型分割必须经过精心设计,以基于前述第VII-B节和VII-C节中的技术,在减少延迟和数据流量成本的同时,最大化LLMs的训练准确性。例如,LLMs中上传参数的比例必须根据PEFT动态调整,考虑到模型训练状态、无线信道条件和主干网络中的互联网延迟。此外,必须仔细设计模型分割和上传的标记表示剪枝在云端-边缘-端架构的不同层中。增加的网络层数增加了优化问题的复杂性,带来了更多的挑战和机会。

E. 教训

类似于其他AI模型的边缘训练,边缘LLM训练旨在在有限的通信-计算资源下优化训练准确性。然而,由于LLM训练的资源需求更大,其基本原理应该是分割训练并“只更新一点点”。换句话说,这个过程必须借鉴大规模模型训练的智慧,即在多个边缘设备/服务器上并行训练,并在无线网络上进行PEFT。这意味着SL可以是LLM时代的重要边缘学习框架。为了使MEI适应LLMs,关键原则是启用基于边缘网络内动态通信-计算资源的灵活模型分割,并联合考虑通信-计算资源和LLMs的训练状态来确定LLMs的微调部分。为了使网络优化落地,需要对LLMs的微调,如LoRA,有理论上的理解,即表征训练准确性与可训练参数百分比之间的关系,以确定无线网络上微调的最佳冻结比例。

VIII. 边缘推理LLMs

边缘LLM推理利用边缘计算为最终用户提供基于训练良好的LLMs的推理服务。边缘推理LLM与传统边缘推理框架的主要区别在于利用LLM的特性,如多模态性、参数共享性和自回归过程,来加速推理过程。边缘LLM推理可以分为三个框架:集中式边缘推理、分割推理和协作推理,如图13所示。在本节中,我们将探讨相关挑战并回顾解决它们的高效技术。边缘LLM推理的相关研究工作总结在表V中。

A. 集中式边缘推理

在集中式边缘LLM推理中,边缘设备将其输入标记卸载到边缘服务器进行AI推理[16]。注意,如第三节A所述的高效LLM推理方法可以在边缘服务器上实现,以加速边缘LLM推理。集中式边缘推理涉及从边缘设备上传原始数据到边缘服务器,这与第三节中讨论的集中式边缘学习共享类似的挑战,即上传数据的通信延迟和边缘服务器上的计算负担(包括过度的内存使用)。接下来,我们将详细讨论克服这些挑战的技术。

  1. 跨模态输入标记减少的LLM推理:类似于集中式LLM训练,输入标记减少减少了快速边缘推理的数据传输量。通过在推理之前从输入文本序列和图像中移除一些不重要的标记,减少了需要卸载到边缘服务器的数据大小[229]、[243]、[244]。已经表明,输入标记修剪对LLMs的推理精度没有显著损失[230]。例如,在将图像输入到ViT之前,移除与图像内容无关的一些图像块可能不会降低预测结果[229]。由于输入标记的显著通信开销来自视觉标记,减少通信开销的有效方法是利用文本/音频数据标记来减少多模态LLM推理中不相关的视觉标记。换句话说,在LLM推理中可以充分利用跨模态性,以消除LLM推理中的通信-计算冗余。

  2. LLM推理的参数共享服务放置/迁移:在多用户系统中提供服务时,边缘服务器上计算资源的稀缺性,例如内存空间,是一个主要问题。这一特点严重限制了边缘服务器能够支持的边缘LLM推理服务的数量。因此,适当设计集中式边缘推理中的服务放置对于容纳大型模型至关重要。此外,考虑到用户的移动性,服务迁移,即根据用户位置的变化将AI模型从一个地方迁移到另一个地方,也可以被研究。在[167]中,作者优化了云-边缘协作推理框架中的服务放置和推理任务卸载策略,其中云端和边缘服务器提供缓存的LLMs推理服务。该框架的目标是在GPU内存和计算容量约束内最小化边缘服务器和云端的总推理成本。这里,边缘服务器的总推理成本包括模型加载/逐出成本、输入提示和推理结果的传输成本、边缘计算成本和精度成本。确定服务放置策略的另一种潜在方法是联合考虑模型请求和所需的计算资源。最终用户对同一LLM的查询可以被卸载并转发到加载了请求LLM的同一边缘服务器,从而提高内存/存储效率,因为LLM可以保留在边缘服务器的内存中。在[232]中,作者为LLMs设计了一个无服务器推理系统,其中推理请求可以被转发到估计启动时间最低的边缘服务器,包括LLM加载和迁移时间。例如,通过消除从存储磁盘加载LLM的额外延迟,推理请求可以被转发到其内存中已经有请求LLM的边缘服务器。尽管上述关于推理服务放置的优秀工作已经完成,但这些工作并没有利用模型/任务之间的共享参数进行边缘推理。实际上,通过利用这一特性,具有大量共享参数的多个LLM可以被加载到服务器的内存中进行并发推理,从而显著提高通过服务更多用户请求同时进行的推理吞吐量。这需要为LLM推理设计参数共享服务放置方案,联合考虑边缘网络的内存、存储、计算和频谱约束。

  3. 集中式LLM推理的资源管理:为了迎合具有异构通信-计算资源和服务要求的更多用户,需要研究集成的通信-计算资源分配。集中式边缘推理的一个关键原则是为具有延迟敏感任务的用户分配更多的频谱带宽和计算资源,以满足他们的QoS要求。在[16]中,Fang等人提出了一种边缘LLM推理方案,用户可以在设计的通信和计算资源分配策略下将LLM推理任务卸载到边缘服务器。通过联合分配频谱带宽和计算资源进行推理任务,可以优化平均端到端延迟和推理精度。在LLM推理的背景下,无线电资源可以与输入标记修剪和参数共享服务放置联合优化。一方面,可以为具有高维输入标记的用户分配更多的无线信道,以便上传,以实现高推理精度。优化问题因此可以被制定为在计算-通信延迟约束下,通过联合优化用户的标记修剪比例和无线电资源分配,来最大化精度(或公平性)的问题。另一方面,当考虑参数共享服务放置时,通信延迟和存储/内存效率之间存在权衡。具体来说,尽管将需要相同LLM的多个推理请求卸载到服务器可以增强存储/内存效率,如上所述,数据传输可能会受到更长的通信延迟的影响,对用户的QoS不利。这激发了我们在考虑无线网络上的信道分配和数据路由时,在延迟约束下研究参数共享服务放置/迁移问题[245]、[246]。

此外,边缘LLM推理中的一个特别挑战在于典型LLMs的自回归过程。这一特性引入了两种困难:1) 任务计算延迟很难预测,因为在解码过程中输出标记的长度在开始时可能不知道,2) 内存使用与KV缓存中的输出标记长度相关,这意味着我们必须为任务调度保留足够的内存和计算资源。基于上述观察,我们可以探索新的边缘计算数学建模,以解决边缘LLM推理的资源优化问题。

B. 分割推理

分割推理是一种通过在边缘设备和边缘服务器上分别放置分割模型来卸载部分计算工作量的技术[161]、[213]。最广泛采用的分割推理范式是双分割范式。边缘设备基于原始数据执行设备端子模型的推理,并将中间特征上传到边缘服务器以进行其余神经网络的处理[237]。分割推理特别适合LLM推理。一方面,与设备上LLM推理相比,分割LLM推理将大部分计算卸载到边缘服务器,从而减少了设备端的工作量,这对于计算密集型的LLM推理至关重要。另一方面,考虑到边缘网络中的LLM应用,如移动健康和自动驾驶,通常涉及高度敏感的个人数据,分割LLM推理有效地缓解了隐私问题,因为边缘设备不需要与边缘服务器共享私有原始数据。有两种突出的双分割方法用于分割LLM推理。首先,可以将LLMs中最资源密集的模块放置在服务器上,以充分利用其计算能力。在Transformers中,解码器模块通常需要比编码器模块更多的计算资源[95]。因此,对于具有编码器-解码器架构的LLMs,如BART[247],编码器模块通常可以缓存在边缘设备上,而解码器模块可以放置在边缘服务器上。对于基于解码器的LLMs,如GPT系列模型,文本和位置嵌入以及几个底部Transformer块可以放置在边缘设备上,因为它们的工作量相对较轻,而其余的Transformer块可以放置在边缘服务器上。其次,可以放置占用大量存储容量的子模型在边缘服务器上。例如,FFNs占LLMs参数的大约2/3,而FFNs中只有一小部分参数对最终推理结果有重要贡献[248]。因此,这些参数在FFNs中,数据量较小但对推理至关重要,可以放置在边缘设备上以节省存储/内存资源。

分割推理在LLMs中遇到了与SL中讨论的类似的挑战,即高维特征上传的通信成本、边缘设备/服务器上的计算延迟和推理输出泄露。接下来,我们将介绍解决这些挑战的技术。

  1. 带有标记表示减少的LLMs分割推理:在考虑分割推理时,有各种方法可以减少LLMs中切割层的标记表示(潜在表示)的体积以上传到边缘服务器。首先,可以通过量化[115]、[249]、[250]、剪枝[234]、[238]和合并[251]、[252]来压缩Transformers中间层的输出:上传压缩的中间层输出可以大大减少通信开销,从而实现低延迟分割推理。

  2. 量化可以将Transformers隐藏层的中间输出从高位宽转换为低位宽。在[233]中,作者在Transformer编码器块之后插入了一个二值化模块,用1位向量代替浮点向量来表示标记表示。

  3. 剪枝涉及移除标记表示中的冗余向量,可以基于轻量级模块应用于图像和文本输入[238]。例如,在[234]中,作者消除了中间编码器输出的冗余向量,剩余的中间编码器输出仅占原始中间编码器输出的2%。通过这种方法,在边缘设备将不重要的中间层输出向量消除后,可以将其上传到边缘服务器进行分割LLM推理。随着编码器深入,剩余表示向量的尺寸减小,表明更多的编码器块保留在边缘设备上进行本地计算,因此研究涉及通信效率和边缘设备计算负担之间权衡的最佳切割层选择是有价值的。合并可以通过合并具有相似语义含义的冗余标记表示来压缩中间输出的信息。在[235]中,作者提出了ToMe,插入到Transformer块中,合并MHA输出中相似标记的表示。这种方法在分割LLM推理中很有前景,使得边缘设备在上传到边缘服务器之前可以使用轻量级合并模块合并中间结果中的表示。特征提取也可以采用,将原始标记表示映射到新维度,通常是较低维度,同时保持足够的信息特征以进行准确的分割推理[253]。一种流行的方法是信息瓶颈方法,它在分割推理中减少中间特征的尺寸,同时保持与分割推理相当的推理精度[236]。信息瓶颈的原理在于在提取的特征和推理结果之间最大化互信息,同时最小化输入数据和提取的特征之间的互信息,这可以应用于分割LLM推理。这允许边缘设备提取信息特征并将提取的特征上传到边缘服务器。此外,在[237]中,作者提出了鲁棒信息瓶颈,将传输速率最大化和信息瓶颈结合起来。通过考虑接收特征中的信息失真鲁棒性,这一原理可以提高接收特征的鲁棒性,并确保边缘服务器在不增加太多通信开销的情况下接收到足够的信息特征。通过使用特征提取方法,分割LLM推理可以通过上传信息特征到边缘服务器来减轻传输高维特征的通信负担。对于多模态LLMs,可以利用不同模态之间的相关性来减少不同模态的标记表示,从而减少通信延迟。一些工作已经讨论了如何在LLMs中减少多模态标记表示。在[238]中,作者提出了一种用于ViTs的跨模态表示减少方法。ViTs使用图像文本跨模态编码器来集成输入文本和图像,用于视觉语言任务,如视觉问题回答。提出的框架旨在减少跨模态交互中的计算开销。具体来说,它首先删除与输入文本无关且对任务不重要的图像标记表示。然后,它独立合并相似的文本和图像标记表示,以减少计算开销。通过将这种方法应用于分割推理,边缘设备可以根据多模态之间的相关性选择和上传信息表示到边缘服务器。此外,所选跨模态特征的语义信息可以使用诸如交叉注意力机制[254]和基于特征相似性的语义融合[239]等方法来提取。遵循深度联合源-信道编码(JSCC)[239]、[255]的原则,编码器和解码器可以通过考虑物理信道噪声和干扰的影响来进行训练,使Transformers的分割推理对这些不利信道影响具有鲁棒性。由于这个领域仍处于起步阶段,跨模态JSCC对于6G边缘智能的分割LLMs可能是一个重要的研究方向。

  4. 渐进式分割推理:可以采用[240]中提出的渐进式分割推理机制来消除只要满足所需推理精度就可以不必要地传输中间标记表示。在[240]中,用户可以安排特征的卸载顺序,先将更重要的特征上传到边缘服务器。渐进式特征卸载将一直进行,直到边缘服务器确定上传的特征达到了进行推理的足够目标置信水平。通过在分割LLM推理中使用这种范式,可以减少最终用户和边缘服务器之间的通信开销,从而节省通信资源。

  5. 带有早期退出的分割推理:早期退出技术,如第三节A中介绍的,已广泛用于LLM推理以减少延迟。这种方法可以应用于分割推理,以减少边缘设备/服务器上的计算延迟。在这种情况下,当在用户端子LLMs中添加早期退出模块时,可以跳过用户(服务器)端子LLMs中后续层的推理计算,这意味着不需要上传中间特征以减少延迟。然而,在采用早期退出方法的LLM推理中,当令牌在早期退出层输出结果时,后续层的隐藏状态缺失。因此,在带有早期退出技术的分割LLM推理中,如果早期退出层位于用户端子LLMs中,仍然需要将隐藏状态上传到边缘服务器以进行后续层的KV缓存计算。因此,我们需要为早期退出层的隐藏状态上传策略进行设计,例如,根据信道条件的机会性上传隐藏状态。

  6. 其他分割推理的变体:尽管分割推理通过在本地设备上保留原始数据来增强用户隐私,但双分割范式仍然允许边缘服务器获得推理结果,这可能是隐私敏感的。为了解决这个问题,可以采用U形或Λ形分割LLM推理范式。在[190]中,一个LLM被划分为三个子模型,放置在解码器块上。这三个子模型是头部子模型,带有文本输入模块,身体子模型,带有解码器块中的隐藏层,以及尾部子模型,带有文本输出模块。大多数需要更多计算资源的解码器块可以放置在边缘服务器上,以充分利用边缘服务器的计算资源。在推理过程中,只交换LLMs中中间Transformer块的输出。这些输出是高维向量,边缘服务器很难解释,从而有效地防止边缘服务器恢复原始数据或推理结果。此外,分割推理可以扩展到多边缘场景,以释放无线边缘网络中分布式边缘服务器的力量,实现多跳分割推理。在这些场景中,一个LLM可以被划分为多个子模型,根据它们的计算能力和设备(服务器)之间的通信条件放置在多个边缘设备/服务器上[241]。通过这种方式,边缘推理可以通过传输子模型层输出到下一个服务器,通过边缘服务器的网状结构顺序进行[256]。显然,为这种情况开发有效算法以获得最优分割决策变得更加具有挑战性。

C. 协作推理分割推理交换高维中间特征,导致过度的通信开销。为了克服这个限制,边缘设备和边缘服务器可以以其他模式进行合作,以更小的信息交换量。例如,如第三节A介绍的推测性解码可以采用在LLMs的设备-服务器协作推理中。推测性解码使边缘设备能够运行一个较小的设备上LLM,称为近似模型,同时要求边缘服务器运行一个较大的LLM来验证和纠正边缘设备上传的输出标记。这种方法的主要优点有三个:首先,它使边缘设备能够生成初步结果/决策,这些结果/决策可以用于低延迟推理。其次,平行解码过程加速了边缘服务器上的推理过程。由于LLMs使用自回归解码技术生成标记,通过服务器端LLM单独串行解码,验证长序列的标记要比解码快得多。第三,关于通信开销,输出标记通常比许多情况下切割层中间特征要小。为了进一步节省通信-计算资源,边缘设备可以根据校准的置信分数决定是否将设备上LLM生成的标记上传到边缘服务器进行验证[242],因为高度自信的输出可能不需要边缘服务器消耗资源进行验证。

D. 教训

边缘设备和服务器通常合作支持LLM推理,以解决隐私和延迟问题。分割或协作推理受到内存和通信-计算延迟等因素的影响。考虑到这些影响因素,边缘LLM推理的优化必须仔细研究,考虑各种LLM技术,如KV缓存优化、多模态特征提取和自回归模型。所有这些特性显著影响LLMs的内存使用、通信开销和推理延迟。因此,边缘LLM推理的设计,如模型分割、早期退出和资源分配,自然不同于传统的边缘推理系统,创造了这一领域丰富的优化挑战和机会。

IX. 更多研究机会

MEI对于LLMs仍然是一个大部分未探索的方向。本节将深入讨论几个紧迫的问题以及我们如何解决它们。

A. 绿色边缘LLM

能耗是公众对LLMs关注的主要问题。据估计,训练GPT-4的能耗相当于1000个美国普通家庭5到6年的能耗。此外,模型推理的能源成本可能更高,因为全球用户频繁的服务请求。因此,一个紧迫的研究问题是设计能源效率高的LLM训练和推理。边缘LLM可以在三个方面减少LLMs的能耗。首先,在网络边缘提供模型微调或推理消除了将大量数据传输到云中心的需要,从而减少了主干网络中的能源成本。其次,集成通信-计算设计可以共同优化,以提高训练/推理的能源效率。例如,可以通过数据压缩或参数冻结来减少数据通信量,以降低总传输功率,只要达到所需的训练/推理精度即可。最后,边缘LLM可以利用小规模LLM获得初始推理结果,并在推理置信度低时才利用基于云的大规模LLM的力量。这可能减少了由于每次用户请求都调用大规模LLM而产生的云中心的能源消耗。关于研究问题,绿色边缘LLM具有集成无线通信和计算的设计,必须考虑整体传输和计算能源。考虑到这一点,有两个主要的设计目标,即减少边缘设备上的能源消耗和减少绿色AI的总体能源消耗。第一个目标有利于电池受限的IoT和移动设备,使AI服务或训练对客户更加可访问。为了实现这个目标,只要节省能源,就可以将AI训练/推理卸载到边缘服务器。例如,采用PEFT和SL时,可以尽可能多地冻结客户端模型,甚至完全冻结,以最小化边缘设备上的能源消耗。尽管这种方法可能会导致学习收敛速度变慢或增加达到目标训练/推理精度的边缘服务器的能源消耗,但这种成本可能不太令人关注,因为边缘服务器通常更强大且连接到电源。第二个目标是减少整体系统成本,特别是从移动运营商的角度来看。通过最小化总能源消耗或最大化整体能源效率,网络运营商可以在有限或更低的能源成本下提高以AI为中心的指标。一个有意义的指标可以是“人工智能能效”[257],即在基本精度要求的约束下,每个能源成本实现的智能(AI精度)量。在考虑能源消耗的同时优化AI可以消除系统仅使用大量能源来实现微小改进的情况,这从运营商和社会的角度来看都是不合理的。

B. 安全边缘LLM

安全边缘LLM是另一个重要的研究领域。虽然LLM安全已经得到了广泛的研究,但边缘LLM安全受到了较少的关注。具体来说,边缘LLM通常涉及LLM的分布式学习,其中出现了新的挑战。尽管联邦学习和分割学习,如前所述,是避免直接访问个人数据的隐私增强方法,但仍存在隐私风险,因为恶意服务器可能会发动攻击以基于接收到的模型或中间特征恢复原始数据[258]、[259]。在移动边缘,应集成定制的安全组件以确保安全和强大的LLMs。让我们考虑安全边缘LLM的两个方面。第一个方面是防御推理攻击,以保护用户隐私从移动边缘服务器或其他边缘设备的泄露。已经证明,通过仅在训练数据集中插入一些看似良性的句子,可以提示LLMs可能泄露训练过程中其他用户的私人信息,如信用卡信息[260]。在FL和SL中可能也会观察到类似的问题,创造了丰富的研究问题。一种可能的防御机制是将噪声添加到高度敏感的个人数据中,如信用卡信息,基于差分隐私理论。此外,可以开发适当的机制来检测来自客户端的此类看似良性的标记/参数/特征。第二个方面是防御数据投毒或后门攻击,通过过滤出旨在改变训练过程的恶意用户,从而维护训练的有效性。这些攻击可能导致LLMs的严重后果,即在考虑医疗保健LLM时输出有害的健康指导。尽管这类攻击已经针对LLMs进行了研究[261]、[262],但仍然缺乏考虑分布式学习的研究工作,特别是FL和SL在边缘设备上的LLMs。考虑到PEFT,攻击者可能只能改变模型的一小部分,例如适配器或提示,以影响训练过程,为设计攻击/防御方案带来了新的挑战/机会。

X. 结论

近年来,语言模型在规模上呈指数级增长,催生了众多具有数十亿参数的LLMs。这一趋势促使我们思考边缘智能如何适应这些庞大的模型。在本文中,我们提倡了从云计算到6G MEI的LLM部署范式转变。我们强调了推动这一范式转变的关键应用,认为云计算很难满足延迟、带宽和隐私要求。与此同时,我们确定了主要源于网络边缘资源限制的挑战。为了应对这些挑战,我们首先提出了一个6G MEI架构用于LLMs,然后阐述了几种方法,以实现在资源受限的移动边缘上高效地进行边缘缓存和交付、边缘训练和边缘推理的LLMs。我们希望本文能激发更多的无线社区研究人员探索在移动边缘部署LLMs,并进一步推进这一新兴领域的发展。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

  • 17
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值