我们正在使用一些Agent平台如FastGPT和Dify,他们注重于快速生成文本内容,知识库问答,提供自定义能力和与现有系统的集成性。
同时,在AI绘画方面,我们原来使用SD,后来使用ComfyUI。虽然ComfyUI被广泛用于将文本转化为图像(文生图),但它实际上是一种生成式AI内容(AIGC)的工具,其功能不仅限于此。它还能够处理文本生成(文生文),因此可以实现多种内容的生成。
Dify中也有提供ComfyUI的集成工具,他是调用Comfy UI的服务。
所以,今天我们介绍ComfyUI LLM Party
这个工具挺酷的,他专注于LLM集成进ComfyUI里面。旨在基于comfyui作为前端,开发一套完整的LLM工作流构建节点,让用户可以快速便捷地构建自己的LLM工作流,并轻松集成到现有的图片工作流中。
该插件在 ComfyUI 中支持绝大多数大语言模型,兼容 OpenAI 格式的 API 调用,并结合 OneAPI 调用几乎所有 LLM API。支持的模型包括通义千问、智谱清言、DeepSeek 和 Kimi。
额外功能有:支持 Ollama 本地模型,模型链节点选项(LLM、VLM-GGUF、LLM-GGUF),以及 VLM 模型的图像识别和提示词反推。
实用工具包括 OpenAI 语音识别与合成、Markdown 转 HTML、HTML 转图片,以及通过飞书机器人发送消息到多个平台。
项目愿景:
1、从最基础的 LLM 多工具调用、角色设定快速搭建自己的专属AI助手、到可以行业落地的词向量RAG、GraphRAG来本地化的管理行业内知识库;
2、从单一的智能体流水线,到复杂的智能体与智能体辐射状交互模式、环形交互模式的构建;
3、从个人用户需要的接入自己的社交APP(QQ、飞书、Discord),到流媒体工作者需要的一站式LLM+TTS+ComfyUI工作流;
4、从普通学生所需要的第一个LLM应用的简单上手起步,到科研工作者们常用的各类参数调试接口,模型适配。
挺酷的,我们图片生成的工作流,一定有许多地方可以和视觉、语音LLM结合,比如:
上下文增强:通过LLM获取用户的意图和上下文,优化生成过程,使生成的图像更符合用户需求。
图像描述生成:使用视觉模型分析生成的图像并自动生成描述,帮助用户理解图像内容,适用于无障碍应用。
又如官方所说的:
您可以将任何 ComfyUI 工作流封装到 LLM 工具节点中。您可以让您的 LLM 同时控制多个 ComfyUI 工作流。当您希望它完成某些任务时,它可以根据您的提示选择合适的 ComfyUI 工作流,完成您的任务,并将结果返回给您。
“您的提示选择合适的 ComfyUI 工作流”,这在我们Fastgpt、Coze或者Dify 中称为:问题分类或意图识别。
还有一些其他的,比如ComfyUI + GraphRAG,这些就是单纯使用ComfyUI前端实现GraphRAG。
总之,节点式工作流本身就是千变万化的,给ComfyUI引入LLM的支持,会让它更加适合千变万化的场景,创建更多复杂有趣的应用。
看看模型支持部分,基本上再配合One-API,市面上的模型都能支持,生产场景建议使用VLLM做模型加速部署,以API形式接入,而不是直接Hugging Face加载下载的模型,多说一句,ollama也不如Vllm,前者多卡部署大模型如70B的,推理会很慢,生成环境下基本不行。
这个项目包罗万象,一直在兼容各种东西的路上,简单的项目描述也要写上许多字才能尽善尽美。
部署方面总共两步吧
方法一下载较方便,可在ComfyUI中直接安装该插件,之后环境部署就是给你的ComfyUI再添加一些这个插件需要的环境。
快速开始
从教程上来看,上手并不难,但是实际上因为它覆盖的东西非常多,你需要深入的话,相应的你需要掌握很多东西,比如一些搜索引擎啊 searxng、neo4j KG、graphRAG、各种LLM的格式、llama.cpp 啊(这些我都弄过,往期文章有,但不全,有一些并没有去写)
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。