paper: https://arxiv.org/pdf/2410.11087v1
摘要
视觉语言模型(VLMs)近年来获得了越来越多的应用,但许多模型仍在基本的空间推理上存在错误。这可能是由于VLMs使用的预训练视觉主干网络,尤其是那些仅具有图像级监督和最小归纳偏置的视觉变换器(ViTs),未能在图像的每个位置编码类别内容。为了解决这一问题,本研究提出了一种新的后训练阶段,称为局部对齐,以及一种新的微调过程,叫做MaskEmbed。MaskEmbed使用掩码重建损失来学习每个图像片段的语义贡献。实验结果表明,局部对齐改进了模型在补丁级语义分割任务上的性能,特别是对使用图像描述对进行训练的强大主干(如CLIP和SigLIP)。进一步研究显示,局部对齐的主干在各种基准测试中提高了性能,尤其是在涉及空间理解的任务(如RefCOCO、OCID-Ref、TallyQA、VSR、AI2D)。因此,可以有效地通过局部对齐阶段学习局部语义提取,这一过程与现有VLMs使用现成视觉主干网络的训练方案相辅相成。
方法
Masking方法
考虑到只需要提取丰富的全局表示而无需特定区域的信息以理解图像,可以通过遮掩来实现。通过比较遮掩单个片段前后的输出,获取该区域的内容信息。为此,可以采用加法近似法:如果模型的输出是一个向量,可以为每个片段学习与之相同大小的向量,并以部分求和近似遮掩后的输出。
提议的方法
引入MaskEmbed,这一精细调优程序旨在增强模型的局部特征提取能力。MaskEmbed通过重建遮掩视图来学习每个片段的语义,采用表达性重建函数,并通过自我监督精细调优预训练模型来实现。
实验
视觉中心实验
为了评估局部对齐的有效性,进行了无复杂VLM系统计算的基本实验。通过语义分割启发的探测基准测试,探讨了预训练模型及其局部对齐版本在不进行任务特定微调的情况下,捕捉本地语义信息的能力。
探测基准
语义分割是一种测试ViT是否编码图像局部语义的自然任务。将其简化为补丁级多标签分类问题。在ViT的输出表示之上创建小的输出头,并训练其通过二元交叉熵(BCE)损失预测每个补丁中的标签联合。
视觉语言实验
通过训练一系列VLMs及对比性能,局部对齐显示在多种基准测试中有所提升,尤其是在涉及空间理解的任务中,如RefCOCO、OCID-Ref、TallyQA、VSR、AI2D。
结果
通过雷达图的形式展示了标准化基准测试的结果,即使在更大的数据混合中,经过局部对齐的背骨模型也显示出一致的改进,尤其在涉及文本理解、图表理解和定位任务的基准测试中。
讨论
在研究中,提出了将局部对齐作为ViT的后训练阶段,采用MaskEmbed进行具体实施并展示改进。局部特征提取的改进相对高效,仅需自我监督。这一方法为VLMs提供了一种高效提升空间理解能力的方法,尤其对于采用高分辨率视觉后骨骼(如CLIP和SigLIP)训练的模型。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。