基于MaxKB部署本地知识库问答系统

01.背景

随着 DeepSeek 的迅速崛起,人工智能的浪潮达到了前所未有的高潮。为了提升企业的运营效率,越来越多的公司开始部署专属的知识库问答系统。这类系统不仅能够显著提高工作效率,还能有效地整合和利用企业内部的知识资源。

但是,市面上现有的开源大模型在企业落地时面临很多挑战。首先,企业的文档和信息往往涉及敏感和私密的数据,因此在本地部署一个私有化的知识库问答系统成为了众多企业的首选解决方案。那么今天,小涛将为大家介绍如何基于 MaxKB 在本地搭建一个高效的知识库问答系统,以满足企业自身特定的需求。

02.MaxKB介绍

1. MaxKB介绍

MaxKB全称是Max Knowledge brain,是一款强大的AI助手,功能支持RAG检索增强、工作流编排、MCP工具调用能力。并且它支持对接各种主流大模型,主要应用于智能客服、企业内部知识库问答等场景。

MaxKB底层使用的是Embedding模型和LLM模型都是开源免费,可能很多小伙伴并不知道这两款模型是做什么用的,给大家简略介绍一下:

Embedding模型:

  • Embedding 模型的主要功能是将输入数据(比如文本或图像)转换成数值向量。这些向量能够捕捉数据的特征和属性。以文本为例,文本 Embedding 就是把文字信息转化为数值形式,这些数值能够反映文本的语义和含义。简单来说,Embedding 帮助计算机理解和处理文本内容。

LLM模型:

  • LLM 模型,也就是大语言模型,是一种经过大量数据预训练的超大型深度学习模型。它的核心是由一组神经网络组成,这些网络有自己的注意力机制,能够帮助它理解文本。具体来说,模型的编码器和解码器会从一段段文字中提取出含义,理解句子之间的关系。简单来说,LLM 模型让计算机能够更好地理解和生成自然语言。
2. MaxKB优势
  • RAG检索增强生成:

    • 所谓RAG指的是对大语言模型输出进行优化,使其能够在生成响应之前引用训练数据来源之外的权威知识库,从而进行更加准确的回复
    • 支持直接上传文档以及自动爬取在线文档
    • 自动拆分文档,进行向量化,能够提升问答效果
  • 快速接入:

    • 支持嵌入第三方web系统,快速接入企业微信、钉钉、飞书等应用。
  • 灵活编排:

    • 灵活的编排AI的工作流
    • 支持MCP工具调用
  • 安全性高:

    • 可以完全私有化地部署在企业内部

03.安装步骤

1. 系统要求
  • 操作系统:Linux(Ubuntu 22.04 / CentOS 7.6 64 位系统)或windows系统

  • CPU/内存:4C/8GB以上

  • 磁盘空间:100GB

2. 官方部署文档
  • MaxKB部署文档:https://maxkb.cn/docs/installation/online_installtion/
3. 在线快速部署

3.1 创建容器

备注:我自己使用的windows10,在windows部署前提需要安装docker,然后即可进行一键部署

# Windows 操作系统docker run -d --name=maxkb --restart=always -p 8080:8080 -v C:/maxkb:/var/lib/postgresql/data -v C:/python-packages:/opt/maxkb/app/sandbox/python-packages registry.fit2cloud.com/maxkb/maxkb# docker run: 创建并启动一个新的容器# -d : 表示在后台运行容器# --name=maxkb: 为容器指定一个名称# --restart=always: 设置容器的启动策略,启动docker服务后,容器会自动重启# -P 8080:8080: 将容器的8080端口映射到主机的8080端口# -v C:/maxkb:/var/lib/postgresql/data:将主机上的c:/maxkb目录挂载到容器目录中# -v C:/python-packages:/opt/maxkb/app/sandbox/python-packages: 将主机上的C:/python-packages挂载到容器目录中# registry.fit2cloud.com/maxkb/maxkb:表示从 registry.fit2cloud.com 的 maxkb 仓库中拉取名为 maxkb 的镜像

3.2 容器创建后的状态

C:\Users\10952>docker psCONTAINER ID   IMAGE                                COMMAND                   CREATED      STATUS          PORTS                              NAMES3e5c758b2b2e   registry.fit2cloud.com/maxkb/maxkb   "bash -c /usr/bin/ru…"   9 days ago   Up 46 seconds   5432/tcp, 0.0.0.0:8080->8080/tcp   maxkb
4. 访问MaxKB
  1. http://目标服务器 IP 地址:8080 (本地部署就是自己本机的IP)

  2. 默认登录信息 用户名:admin 默认密码:MaxKB@123…

img

5. 模型设置

5.1 登录后点击"系统设置",然后点击左侧"模型设置",点击添加模型

img

5.2 我这里选择deepseek模型,然后依次填写模型名称、权限看个人选择,基础模型选择"deepseek-chat",最后在API key 中输入从deepseek开放平台获取的API key 即可添加成功

img

6. 创建知识库

6.1 在"知识库"中创建属于自己业务的知识库,向量模型默认选择MaxKB自带的Embedding,知识库类型可以先默认选择通用性,并点击创建即可

img

6.2 在"知识库"中上传知识文档,目前支持包含txt、Markdown、PDF、Docx、HTML、xls、xlsx、csv、zip等文件格式,然后点击下一步

img

6.3 “设置分段规则"这里先可以默认选择"智能分段”,然后可以通过"生成预览"查看,后期若是分段无法达到预期效果,可采用"高级分段"根据自定义的"正则表达式"进行分段,最后确认无误,点击"开始导入"

img

6.4 等待"生成",最后显示"成功"即代表分段成功,即可使用

img

7. 创建应用

7.1 在"应用"中创建应用,前期调试先选择"简单配置",然后点击创建

img

7.2 然后进行设置,选择已添加的大模型,我这里原先添加的是deepseek,就直接选择deepseek,然后关联知识库文档,将原先已上传的知识库进行关联上,保存并发布

img

7.3 创建完应用后,然后点击演示测试效果

img

7.4 开启问答测试,检测是否能够命中知识库,可以看到下面问题直接命中到知识库,并经过大模型优化后,并将知识库中的规则准确输出

img

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值