今天给大家推荐一个好发Nature子刊的创新点:贝叶斯优化+LSTM+时间序列预测。
众所周知,LSTM在处理时序问题时表现出色,但训练时需要大量超参数调优…贝叶斯优化作为一种高效的全局优化算法,特别适用于此类复杂且昂贵的目标函数优化。通过结合两者,我们就可以更高效地调整LSTM模型的超参数,避免局部最优解,提高模型在时序预测任务中的性能,同时节省计算资源!
因此这种结合对于股票市场预测、天气预报、流量预测等多个实际应用非常重要,研究价值很高,且目前已有多篇新成果成功登上Nature子刊,比如一种基于贝叶斯优化的LSTM故障检测方法,在多种场景下准确率近100%。
Bayesian‑optimized LSTM‑DWT approach for reliable fault detection in MMC‑based HVDC systems
方法:论文提出了一种基于贝叶斯优化的LSTM和离散小波变换的方法,用于在基于模块化多电平变换器的高压直流系统中进行可靠的故障检测。实验证明,该方法在各种测试场景下实现了99.04%的平均识别准确率,并对外部故障和干扰表现出100%的抵抗力。
创新点:
-
通过将LSTM与离散小波变换(DWT)相结合,实现了特征提取的创新方法。
-
引入了具有1毫秒、1.5毫秒和2毫秒多时间窗口的三层继电器系统设计,使得在长距离传输中能够准确检测故障而无需备用系统。
-
运用了贝叶斯优化方法进行LSTM超参数调优,通过单一智能调优模型来简化过程,取代传统依赖多手动阈值的方案。
Artificial intelligence in healthcare: combining deep learning and Bayesian optimization to forecast COVID-19 confirmed cases
方法:研究中使用了贝叶斯优化算法来优化LSTM模型的超参数,以提高模型预测COVID-19病例的准确性。此外,文章还提到了使用深度Q网络(Deep Q-Network)模型,并与其他几种模型(如CNN和MHA)进行了比较,以展示不同模型在预测任务中的表现。
创新点:
-
利用递归方法预测COVID-19病例,模型通过迭代过程逐日预测,提升了预测的准确性和模型的稳定性。
-
结合Bayesian优化算法和深度学习算法(如LSTM),优化了COVID-19预测模型的表现,尤其在预测误差率方面表现卓越。
-
提出了一种精细化的非线性分区模型,能够准确捕捉COVID-19的动态特性,考虑了模型变量与预定干预措施之间的复杂关系。
Computer aided progression detection model based on optimized deep LSTM ensemble model and the fusion of multivariate time series data
方法:论文提出了一种基于LSTM基分类器的堆叠集成模型,利用来自NACC的时间序列数据检测阿尔茨海默病(AD),通过贝叶斯优化技术构建最优深度堆叠模型,并在多个机器学习模型和单一LSTM模型的基础上进行性能比较,最终实现对AD进展的准确预测。
创新点:
-
引入了一种新颖的深度堆叠集成模型,该模型基于多种LSTM深度学习模型,以准确预测阿尔茨海默病(AD)。
-
采用贝叶斯优化技术,针对不同特征集优化每个LSTM基分类器的超参数,从而构建异质LSTM模型。
-
首次将所提出的模型应用于国家阿尔茨海默病协调中心数据集,避免了数据泄露问题,获得了更真实的测试结果。
Prediction of gestational diabetes using deep learning and Bayesian optimization and traditional machine learning techniques
方法:文章中提到了一个新颖的决策支持模型,使用RNN-LSTM结合贝叶斯优化开发,该模型在数据集上对于诊断GD风险群体的患者达到了95%的敏感性和99%的特异性,并且获得了98%的AUC值。这表明,通过贝叶斯优化方法优化的LSTM模型在预测妊娠糖尿病方面表现出了很高的准确性和特异性。
创新点:
-
首次在妊娠糖尿病(GD)诊断中应用RNN-LSTM深度学习算法结合贝叶斯优化。
-
突破性地使用了前瞻性收集的数据,而非传统的回顾性电子医疗数据。
-
在诊断GD的模型开发中,综合运用了多种机器学习方法(如SVM、随机森林)和深度学习方法(RNN-LSTM),并结合了贝叶斯优化与交叉验证,进行全面比较和分析。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。