传统 RAG 与 Agentic RAG对比

1. 传统 RAG 的困境2. Agentic RAG 的创新突破3. Agentic RAG 的优势与应用前景

在人工智能快速发展的当下,大语言模型(LLM)技术取得了显著进步,但也面临诸多挑战。检索增强生成(RAG)技术应运而生,为提升语言模型性能提供了新途径。不过,传统 RAG 存在一定局限,而 Agentic RAG 则试图突破这些瓶颈,带来更强大的功能体验。本文将探究二者的差异。

1. 传统 RAG 的困境

传统 RAG 的工作流程主要包括:先将文档进行编码,通过嵌入模型转化为向量形式存储在数据库中。当接收到用户查询时,对查询进行编码,然后在数据库中进行相似度搜索,找到最相似的文档,将其作为上下文信息与查询一起构建提示(Prompt),最后输入到 LLM 中生成回答。看似流畅的流程,却隐藏着不少问题。

  • 单次检索生成的局限:传统 RAG 仅进行一次检索和生成。在实际应用中,如果初始检索到的上下文信息不足,它无法根据需求动态搜索更多信息。比如,当用户询问一个涉及多领域交叉的复杂问题时,一次检索获取的内容可能只是问题的冰山一角,难以全面准确地回答问题。

  • 推理能力短板:面对复杂查询,传统 RAG 在推理方面显得力不从心。像一些需要逻辑推导、多步分析的问题,它无法像人类一样进行深入思考和推理,只能简单地匹配和组合已有信息,导致回答质量不高。

  • 缺乏策略调整能力:传统 RAG 系统缺乏自适应能力,无论面对何种问题,都采用固定的处理方式,无法根据问题的类型、复杂程度等因素灵活调整策略,难以满足多样化的用户需求。

2. Agentic RAG 的创新突破

Agentic RAG 旨在解决传统 RAG 的上述问题,其核心思想是在 RAG 的各个阶段引入智能化(Agentic)行为,通过智能代理(LLM Agent)来优化整个流程。下面结合其具体步骤来深入了解:

  • 查询重写优化(第 1 - 2 步):当用户查询输入后,智能代理首先对初始查询进行重写。这一过程不仅可以纠正拼写错误,还能对模糊、歧义的表述进行澄清,将用户的意图转化为更精准的查询语句,为后续获取更准确的信息奠定基础。例如,用户输入 “苹果的最新产品有哪些”,智能代理可能会将其重写为 “苹果公司 2024 年发布的最新产品有哪些”,明确了时间范围和主体,提高查询的准确性。

  • 上下文信息智能判断(第 3 - 8 步):重写后的查询进入判断环节,智能代理会评估是否需要更多上下文信息。若判断不需要,重写后的查询会直接发送给 LLM。如果需要,代理会从多种外部来源(如数据库向量、工具和 API、互联网等)中寻找最佳的上下文信息,并传递给 LLM。比如,当用户询问 “如何制作低糖蛋糕” 时,代理会从专业的美食数据库、烹饪工具 API 或互联网上的美食论坛中获取相关的低糖蛋糕制作配方、技巧等信息,补充丰富的上下文,帮助 LLM 生成更优质的回答。

  • 响应生成与检查(第 9 - 12 步):LLM 根据接收到的查询和上下文信息生成回答后,智能代理会对答案进行检查,判断其是否与问题相关。如果答案相关,就直接返回给用户;若不相关,则返回第一步重新开始整个流程。这一循环会多次执行,直到得到合适的回答,或者系统判断无法回答该查询。通过不断的反馈和优化,确保回答与用户问题高度契合,提升回答的准确性和相关性。

3. Agentic RAG 的优势与应用前景

相比传统 RAG,Agentic RAG 通过引入智能代理,在处理复杂任务和多样化需求时表现得更加健壮和灵活。它能够根据问题动态调整策略,不断优化回答,为用户提供更满意的服务。

在实际应用中,无论是智能客服领域,帮助客服快速准确地回答用户复杂问题;还是在智能写作辅助场景,为创作者提供丰富的素材和精准的建议;亦或是在教育领域,实现个性化的智能辅导,Agentic RAG 都有着巨大的潜力,有望成为推动人工智能应用进一步发展的重要力量。

需要注意的是,文中展示的 Agentic RAG 架构只是众多架构中的一种,在不同的使用场景下,开发者可以根据实际需求对其进行灵活调整和适配,以发挥出最大的效能。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值