我们常说的4A架构就是业务架构、数据架构、应用架构和技术架构,其实去理解4A架构的集成核心,你仍然要去参考企业架构这本书里面谈到的企业架构元模型。
大家看我今天这张图的时候也能够感觉到我其实这张图也是依托在企业架构元模型的基础上,只是做了一些调整和优化。
这张图的核心我再简单总结如下:
- 业务流程底层失败业务对象,业务对象转数据架构数据对象识别
- 业务组件对应应用组件,业务流程对应应用编排
- 应用功能实现最终需要技术组件支撑
但是我今天重点不是谈这个。而是想简单谈下在AI和大模型时代,对我们传统的企业架构和4A架构规划,究竟带来了哪些变化?所以为了更好的描述这个问题,我仍然准备从信息化,数字化到智能化三个关键的阶段来描述企业架构的描述和定义重点究竟在哪里。
1. 信息化-业务驱动IT
在信息化阶段,重点是业务流程驱动IT系统建设,最终业务流程落地到IT系统的功能点支撑,IT系统在执行过程中又产生和沉淀了持久化的数据。同时应用和数据最终落地到技术架构基础设施进行支撑。
这个阶段是典型的流程驱动,人驱动系统,数据往往是流程执行后的附属品。虽然后数据可以专门走OLAP这条线进行辅助决策分析,但是数据本身并不直接支撑业务的运作。
即:业务不是数据驱动的,业务是流程和人驱动的。
2. 数字化-数据驱动业务
在数字化阶段,我们实际4A架构并没有太大的变化。但是增加了数据驱动业务这条关键的线。即数据不再是被动的位置。
单个数据往往来源于单个业务,无法反向产生价值。
但是多个相关的数据发生管理和组合,往往就能够产生新的价值,即我们说的数据整合后可以形成新的应用或新的能力。类似数据中台的数据服务能力接口,这些新应用能够反向驱动业务,要么是这次老业务,要么是数据驱动产生新的业务运营模式。
3. 智能化-模型驱动
到了AI和大模型阶段,那么变成了模型驱动,但是并不是说在传统的4A架构上面增加了一个新的AI架构。AI架构的内容本身应该拆分到已有的4A架构里面。AI大模型部署所需要的算力资源要求本身属于底层的技术架构,而AI大模型技术底座应该属于应用架构。对于数据架构,最大的变化就是传统企业架构数据架构的概念要扩展,扩展到纳入更多的非结构化数据,多模态数据等。
结构化数据+非结构数据才能为AI提供强大的底层知识支撑。
而对于模型驱动本质是数据+算法驱动。数据来源于数据架构,而算法本身就应该在应用架构的AI平台层里面。
通过算法+数据,结合底层大模型的能力,就可以衍生更多的类似AI智能体的新的应用形态。这些AI应用又可以满足新的业务场景。
当我们把这个逻辑讲清楚后,大家更加容易理解为何企业的智能时代需要遵循信息化-》数字化-》智能化的发展演进路线。
信息化阶段完成最基本的数据积累。数字化阶段基于数据的采集集成,加工处理实现基本的数据驱动业务能力;而到了智能化阶段,我们需要的不仅仅是数据,而是通过大模型能力将数据转换为了知识,知识是企业大量最佳实践的高度浓缩。
数据本身不能产生智能,知识才能。大模型时代你优先要考虑的问题一定是如何结合我们的隐性经验将已有数据结合大模型能力转换为知识,有了知识才可能进一步衍生智能化能力。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。