量化交易框架:量化投资的智能助手

量化投资是现代金融的热点话题,而阿布量化(Abu Quantitative Framework,简称 ABu)是一个专为量化交易而生的 Python 开源框架。ABu 不仅提供了丰富的量化分析功能,还为用户提供了友好的策略开发、回测与模拟交易支持,是量化投资爱好者和从业者的得力助手。

项目地址:https://github.com/bbfamily/abu

项目背景

量化投资的核心是利用数据驱动决策。然而,构建一个完整的量化交易系统往往需要解决大量复杂问题,包括数据处理、策略开发、回测和风险控制等。ABu 框架的目标是简化这一过程,为用户提供开箱即用的工具和灵活的开发环境。

ABu 的特点包括:

  • 支持多种数据源的接入,涵盖股票、期货、外汇等多种资产类型。

  • 具备模块化设计,用户可根据需求扩展功能。

  • 通过丰富的图表和数据可视化工具,帮助用户直观地分析投资策略。

核心优势

1. 模块化设计

ABu 的框架设计灵活,包含策略模块、数据模块、回测模块等,用户可以按需组合使用。

2. 多资产支持

ABu 支持多种金融资产类型,包括股票、期货、加密货币等,能够满足多样化的投资需求。

3. 可视化功能

内置多种可视化工具,如收益曲线、回测结果展示,让用户可以快速洞察策略效果。

4. 丰富的示例与文档

项目提供了详细的文档和示例代码,新手也能快速上手。

快速上手

以下是使用 ABu 的快速入门教程。

1. 安装与环境准备

系统要求
  • Python 版本:3.7 或以上
安装步骤

通过 pip 安装 ABu:

pip install abupy

安装完成后,验证安装是否成功:

import abupy``print(abupy.__version__)

2. 数据获取与处理

ABu 提供了多种数据源的接入方式,以下是从网络获取股票数据的示例。

示例代码:股票数据加载
from abupy import AbuMarketDrawing, ABuSymbolPd``   ``# 下载 AAPL 的历史数据``apple_data = ABuSymbolPd.make_kl_df('usAAPL', n_folds=2)``   ``# 显示数据基本信息``print(apple_data.head())``   ``# 绘制股票价格曲线``AbuMarketDrawing.plot_candle_stick(apple_data)``   

3. 策略开发

在 ABu 中,策略开发基于事件驱动模型,用户只需定义买入和卖出的逻辑。

示例代码:简单均线策略
from abupy import AbuFactorBuyBreak, AbuFactorSellBreak``from abupy import ABuPickStockWorker``   ``# 定义买入策略:突破买入``buy_factors = [{'class': AbuFactorBuyBreak, 'xd': 20}]``   ``# 定义卖出策略:突破卖出``sell_factors = [{'class': AbuFactorSellBreak, 'xd': 20}]``   ``# 选择标的``stock_pickers = ABuPickStockWorker.pick(['usAAPL'])``   ``# 运行策略``from abupy import ABuTradeExecute``trade_executor = ABuTradeExecute(buy_factors, sell_factors, stock_pickers)``trade_executor.run()``   

4. 策略回测

ABu 提供强大的回测工具,用户可以通过简单的配置对策略进行历史数据测试。

示例代码:策略回测
from abupy import ABuMetricsBase``   ``# 回测结果分析``metrics = ABuMetricsBase(trade_executor.orders)``metrics.fit_metrics()``metrics.plot_returns_cmp()``   

生成的回测报告将包括:

  • 收益曲线

  • 最大回撤

  • 夏普比率等重要指标

5. 可视化功能

ABu 内置多种可视化工具,用户可以用它来绘制交易过程、收益率分布等内容。

示例代码:绘制收益分布
metrics.plot_histogram()

结果将显示收益的分布情况,帮助用户分析策略的稳定性和潜在风险。

实用场景

  1. 策略研究:快速开发和测试交易策略,评估其在历史数据中的表现。
  2. 风险管理:通过回测和可视化工具,评估策略的风险与回报。
  3. 教学与学习:ABu 是量化投资教学的优秀工具,适合学生和爱好者学习量化交易原理。

总结

ABu量化交易框架 是一个功能强大且易于使用的工具。无论您是量化投资的初学者,还是希望改进策略的专业投资者,ABu 都能为您提供强大的支持。如果您对量化投资感兴趣,不妨试试 ABu。

项目地址:https://github.com/bbfamily/abu

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值