在AI时代,语言模型正在从“对话工具”进化为“行动者”。它们不再只是回答问题,而是能主动完成任务。这类系统,我们称之为“智能体(agent)”。随着大型语言模型(LLM)的能力不断增强,尤其是在推理、多模态交互和工具调用方面取得的突破,基于 LLM 构建的智能 Agent 已经逐渐成为实现复杂、多步任务自动化的新型系统。
本文将基于实践经验,为产品和工程团队详细介绍如何设计和构建高效、安全和可靠的智能 Agent。
什么是 Agent?
Agent是一种能够代表用户自主完成任务的系统。
传统软件是工具,用户操作它完成任务;而 Agent 是助手,它代表用户完成任务。它不仅能执行指令,还能理解上下文、做出判断、调用工具、处理异常,甚至在失败时主动交还控制权。
Agent 的核心特性包括:
- 使用大语言模型(LLM)驱动决策与执行
- 动态调用工具(API、MCP、函数等),与外部系统交互
- 拥有明确的行为指令与安全边界
简单的聊天机器人或单轮对话系统不属于 Agent 范畴。
什么时候该用 Agent?
如果你的流程具备以下特征,那么 Agent 可能正是你所需要的:
-
复杂决策
:如客服退款审批,需要理解上下文与例外情况。
-
规则繁杂
:如供应商安全审查,规则多且易变。
-
非结构化数据
:如处理文档、自然语言交互等。
Agent 擅长处理模糊、动态、难以规则化的场景,是传统自动化无法覆盖的“最后一公里”。
构建 Agent 之前,应确保你的场景符合以上至少一种条件,否则传统的确定性方案可能更适合。
构建 Agent 的三大基石
模型、工具和指令是构建 Agent 的三大基础组件:
- 模型(Model):负责推理与决策。建议先用最强模型建立性能基线,再尝试小模型优化成本。
- 工具(Tools):Agent 调用外部 API 或函数完成任务。
- 指令(Instructions):定义 Agent 行为的脚本或流程,应清晰、结构化、覆盖边界情况。
1. 模型
不同的模型在任务复杂度、响应延迟和使用成本方面各有优劣。当然,也不是每个任务都需要最强大的模型。比如,简单的检索或意图分类任务,用一个小巧快速的模型就足够了。而像“是否批准退款”这类需要复杂判断的任务,则更适合使用能力更强的模型。
一个行之有效的方法是:在构建 Agent 原型时,先为每个任务都使用最强的模型,建立一个性能基线。然后,再尝试用更小的模型替换部分任务,看看是否还能达到可接受的效果。这样做的好处是,你不会过早牺牲性能,同时也能明确哪些任务可以降本,哪些不能。
2. 工具
工具通过调用底层应用或系统的API,扩展了 Agent 的能力。对于那些没有 API 的传统系统,智能体可以借助“计算机操作模型”,直接像人类一样通过网页或应用界面进行交互。
每个工具都应该有标准化的定义,以便支持灵活的多对多映射关系——一个工具可以被多个智能体调用,一个智能体也可以使用多个工具。文档完善、经过充分测试、可复用的工具不仅易于发现,还能简化版本管理,避免重复定义。
一个好的工具系统,不只是“能用”,而是“可组合、可扩展、可维护”。比如,Model Context Protocol (MCP) 就是一个可以方便扩展 Agent 工具的标准协议。这样的工具系统才是构建长期智能体生态的关键。
3. 指令
对任何基于大语言模型的应用来说,高质量的指令都是核心,但对 Agent 而言尤其关键。清晰的指令能减少歧义,提升智能体的决策质量,从而让工作流更顺畅、错误更少。
传统软件靠代码定义边界,智能体靠语言定义行为。你不是在写指令,你是在赋予一个系统“意图”和“判断力”。这需要的不只是技术,更是产品直觉。
真正优秀的智能体,不只是能“完成任务”,而是能在不确定中“做出选择”。
智能体示例
理解了模型、工具和指令三大组件后,我们可以构建一个最小可用智能体,用来完成一个简单但实用的任务:查询天气。
你可以使用 OpenAI 开源的 Agents SDK 简单快捷的构建智能体,比如:
import asyncio
from agents import Agent, Runner, WebSearchTool, trace
asyncdefmain():
agent = Agent(
name="Web searcher",
instructions="You are a helpful agent.",
tools=[WebSearchTool(user_location={"type": "approximate", "city": "New York"})],
)
with trace("Web search example"):
result = await Runner.run(
agent,
"search the web for 'local sports news' and give me 1 interesting update in a sentence.",
)
print(result.final_output)
# The New York Giants are reportedly pursuing quarterback Aaron Rodgers after his ...
if __name__ == "__main__":
asyncio.run(main())
编排策略:单体 vs 多体
三大基石(模型、工具、指令)构建好了之后,下一步就是如何通过“编排”让它真正运转起来了。
虽然我们常常会想一口气构建一个全自动、复杂架构的智能体系统,但从大量实践中来看——渐进式构建反而更容易成功。先从简单的架构开始,逐步扩展能力,才更符合现实的复杂性和不确定性。
整体来看,智能体的编排策略可以分为两类:
01 单智能体系统
一个智能体配备好必要的工具和指令,通过循环执行任务,完成整个工作流。 适合任务边界清晰、复杂度可控的场景。
02 多智能体系统
将任务拆分给多个智能体,由它们协调完成。 适合流程复杂、模块清晰、需要专业化分工的场景。
虽然多智能体系统可以根据具体的工作流和业务需求设计出各种复杂架构,但在实践中有两种通用模式最具代表性:管理者模式和去中心化模式。
管理者模式:智能体作为工具,“中心智能体”作为管理者,负责协调多个专精智能体的工作。每个专精智能体负责一个特定任务或领域,管理者通过工具调用的方式调度它们,确保任务按需完成。
这种结构的优势在于:
- 控制集中,流程统一
- 各模块职责清晰,便于维护和扩展
- 用户体验一致,避免上下文丢失
以 Agents SDK 为例,你可以这么构建一个多智能体系统:
import asyncio
from agents import Agent, ItemHelpers, MessageOutputItem, Runner, trace
"""
This example shows the agents-as-tools pattern. The frontline agent receives a user message and
then picks which agents to call, as tools. In this case, it picks from a set of translation
agents.
"""
spanish_agent = Agent(
name="spanish_agent",
instructions="You translate the user's message to Spanish",
handoff_description="An english to spanish translator",
)
french_agent = Agent(
name="french_agent",
instructions="You translate the user's message to French",
handoff_description="An english to french translator",
)
italian_agent = Agent(
name="italian_agent",
instructions="You translate the user's message to Italian",
handoff_description="An english to italian translator",
)
orchestrator_agent = Agent(
name="orchestrator_agent",
instructions=(
"You are a translation agent. You use the tools given to you to translate."
"If asked for multiple translations, you call the relevant tools in order."
"You never translate on your own, you always use the provided tools."
),
tools=[
spanish_agent.as_tool(
tool_name="translate_to_spanish",
tool_description="Translate the user's message to Spanish",
),
french_agent.as_tool(
tool_name="translate_to_french",
tool_description="Translate the user's message to French",
),
italian_agent.as_tool(
tool_name="translate_to_italian",
tool_description="Translate the user's message to Italian",
),
],
)
synthesizer_agent = Agent(
name="synthesizer_agent",
instructions="You inspect translations, correct them if needed, and produce a final concatenated response.",
)
asyncdefmain():
msg = input("Hi! What would you like translated, and to which languages? ")
# Run the entire orchestration in a single trace
with trace("Orchestrator evaluator"):
orchestrator_result = await Runner.run(orchestrator_agent, msg)
for item in orchestrator_result.new_items:
ifisinstance(item, MessageOutputItem):
text = ItemHelpers.text_message_output(item)
if text:
print(f" - Translation step: {text}")
synthesizer_result = await Runner.run(
synthesizer_agent, orchestrator_result.to_input_list()
)
print(f"\n\nFinal response:\n{synthesizer_result.final_output}")
if __name__ == "__main__":
asyncio.run(main())
去中心化模式:智能体之间传递控制权,没有中心智能体。多个智能体以“平级”身份协作,根据任务类型将控制权“交接”给最合适的智能体。每个智能体只处理自己擅长的部分,然后将流程继续传递。
这种结构更适合:
- 多轮对话、复杂分流
- 各模块独立性强、耦合度低
- 需要灵活动态扩展的系统
使用 Handoff 模式的多智能体系统示例如下:
from agents import Agent, Runner
technical_support_agent = Agent(
name="Technical Support Agent",
instructions=(
"You provide expert assistance with resolving technical issues, "
"system outages, or product troubleshooting."
),
tools=[search_knowledge_base]
)
sales_assistant_agent = Agent(
name="Sales Assistant Agent",
instructions=(
"You help enterprise clients browse the product catalog, recommend "
"suitable solutions, and facilitate purchase transactions."
),
tools=[initiate_purchase_order]
)
order_management_agent = Agent(
name="Order Management Agent",
instructions=(
"You assist clients with inquiries regarding order tracking, "
"delivery schedules, and processing returns or refunds."
),
tools=[track_order_status, initiate_refund_process]
)
triage_agent = Agent(
name="Triage Agent",
instructions="You act as the first point of contact, assessing customer "
"queries and directing them promptly to the correct specialized agent.",
handoffs=[technical_support_agent, sales_assistant_agent, order_management_agent],
)
await Runner.run(
triage_agent,
input("Could you please provide an update on the delivery timeline for our recent purchase?")
)
构建安全边界
设计良好的安全边界(Guardrails)是构建安全智能体系统的关键。它们能有效降低数据隐私泄露的风险(例如防止系统提示暴露),也能避免品牌声誉受损(例如确保模型行为符合品牌调性)。
你可以针对已知风险设置护栏机制,同时在实际运行中不断叠加新的防线,覆盖新暴露出的漏洞。护栏不是“可选项”,而是任何基于 LLM 的系统部署中不可或缺的一环。真正可靠的智能体系统,必须在“能力”与“控制”之间找到平衡。护栏机制不是为了限制模型,而是为了让它在边界内自由发挥。
构建安全边界的常见机制包括:
- 相关性过滤:防止回答偏题;
- ***安全检测:*拦截prompt injection等攻击;
- 隐私过滤:避免泄露用户隐私;
- 工具风险分级: 低风险操作可自动执行,而高风险操作必须人工审批;
- 输出校验:确保内容符合品牌与法律要求;
- 人工干预:在高风险操作、无法识别错误等情况下将控制权还给人类,保障体验与安全。
比如,一个校验输出的智能体示例如下所示:
from __future__ import annotations
import asyncio
import json
from pydantic import BaseModel, Field
from agents import (
Agent,
GuardrailFunctionOutput,
OutputGuardrailTripwireTriggered,
RunContextWrapper,
Runner,
output_guardrail,
)
"""
This example shows how to use output guardrails.
Output guardrails are checks that run on the final output of an agent.
They can be used to do things like:
- Check if the output contains sensitive data
- Check if the output is a valid response to the user's message
In this example, we'll use a (contrived) example where we check if the agent's response contains
a phone number.
"""
# The agent's output type
classMessageOutput(BaseModel):
reasoning: str = Field(description="Thoughts on how to respond to the user's message")
response: str = Field(description="The response to the user's message")
user_name: str | None = Field(description="The name of the user who sent the message, if known")
@output_guardrail
asyncdefsensitive_data_check(
context: RunContextWrapper, agent: Agent, output: MessageOutput
) -> GuardrailFunctionOutput:
phone_number_in_response = "650"in output.response
phone_number_in_reasoning = "650"in output.reasoning
return GuardrailFunctionOutput(
output_info={
"phone_number_in_response": phone_number_in_response,
"phone_number_in_reasoning": phone_number_in_reasoning,
},
tripwire_triggered=phone_number_in_response or phone_number_in_reasoning,
)
agent = Agent(
name="Assistant",
instructions="You are a helpful assistant.",
output_type=MessageOutput,
output_guardrails=[sensitive_data_check],
)
asyncdefmain():
# This should be ok
await Runner.run(agent, "What's the capital of California?")
print("First message passed")
# This should trip the guardrail
try:
result = await Runner.run(
agent, "My phone number is 650-123-4567. Where do you think I live?"
)
print(
f"Guardrail didn't trip - this is unexpected. Output: {json.dumps(result.final_output.model_dump(), indent=2)}"
)
except OutputGuardrailTripwireTriggered as e:
print(f"Guardrail tripped. Info: {e.guardrail_result.output.output_info}")
if __name__ == "__main__":
asyncio.run(main())
结论
Agent 标志着工作流自动化进入了一个全新时代——系统不仅能处理模糊信息,还能跨工具执行动作,完成多步骤任务,具备高度自主性。
与传统的 LLM 应用不同,智能体能端到端地执行整个流程,非常适合那些包含复杂决策、非结构化数据处理,或依赖脆弱规则系统的场景。
要构建可靠的智能体,基础必须扎实:
- 选用有能力的模型,配合定义清晰的工具和结构化的指令。
- 根据复杂度选择合适的编排模式——从单智能体起步,只有在确有必要时再演进为多智能体系统。
- 在每一个阶段都必须嵌入Guardrails(护栏机制):从输入过滤、工具调用,到引入人工介入机制,确保智能体在生产环境中既安全又可控。
部署智能体,不是“要么全上,要么不做”的二选一。 从一个小用例开始,和真实用户一起验证,逐步拓展能力。 只要基础打得牢、迭代节奏稳,智能体就能带来真正的业务价值。
未来的组织,不是靠流程驱动,而是靠智能体驱动。 从今天开始,让你的系统“动起来”。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。