deepseek在国内顶级三级甲等医院部署使用最新情况汇总

DeepSeek人工智能大模型在国内三甲医院部署应用全景观察
——2025年医疗智能化转型加速

一、区域部署:从上海到全国,多家三甲医院加速落地

  1. 上海:医疗AI创新高地
  • 复旦大学附属华山医院:率先在不同平台部署测试DeepSeek 70B和满血版大模型,通过多模型配置探索性价比最优方案,并严格保障内网环境下的数据安全。

  • 瑞金医院:联合华为发布国内首个病理大模型“瑞智病理”,实现病理切片自动化分析,日均处理量达3000张,未来将推出多模态融合模型,覆盖更复杂诊疗场景。

  • 上海市第四人民医院:完成本地化部署并构建医疗知识库,整合3万余例典型病例及本地诊疗规范,支持医生快速调取精准诊疗方案,病历生成效率提升显著。

  • 上海市第六人民医院金山分院:全院医生工作站接入DeepSeek,实时辅助疾病诊断与治疗方案推荐,尤其在疑难杂症中降低误诊风险。

  1. 其他省市:辐射效应初显
  • 深圳大学附属华南医院:基于DeepSeek-R1构建覆盖“临床-科研-管理”的全场景智算中枢,泌尿外科试点知识库助手,实现证据快速检索与个性化诊疗建议。

  • 柳州市人民医院:在血液内科和医学检验科部署DeepSeek,开发细胞识别分析系统,优化血常规检测流程,自动化处理血液显微图像,准确率显著提升。

  • 成都市第一人民医院:成为西南地区首个完成DeepSeek本地化部署的三甲医院,重点探索AI在慢病管理和远程诊疗中的应用。

二、核心应用场景:从辅助诊断到全流程优化

  1. 病理与影像分析智能化
  • 瑞金医院通过“瑞智病理大模型”实现肿瘤浸润范围自动标注、ki-67指数计算等复杂任务,病理科诊断效率提升40%以上。

  • 华山医院计划整合影像学与生物标志物数据,开发多模态AI诊断系统,肺结节鉴别准确率已达95.2%,超越人类医生平均水平。

  1. 临床决策与病历管理
  • 深圳华南医院利用DeepSeek实时分析海量医学数据,为泌尿外科提供“证据直达”服务,减少医生文献查阅时间。

  • 上海四院通过AI生成标准化病历模板,医生录入关键信息后,系统自动完成80%的文书工作,释放更多诊疗时间。

  1. 患者服务与流程再造
  • 上海市第六人民医院金山分院引入AI预问诊功能,患者挂号后通过交互生成初步病历,缩短门诊等待时间。

  • 深圳市人民医院试点AI随访机器人,结合情感分析技术为患者提供个性化康复指导,外籍患者可通过多语言支持获得服务。

三、技术优势与数据安全:本地化部署成关键

  1. 核心技术特性
  • DeepSeek采用“分层次知识蒸馏”技术,在医疗场景中兼顾泛化能力与垂直领域精准适配,推理计算量降低30%。

  • 开源生态优势显著,支持医院根据需求定制模型,如柳州市人民医院开发的细胞识别系统已进入测试阶段。

  1. 数据安全与隐私保障
  • 所有医院均采用本地化部署,数据全程在内网处理,杜绝传输泄露风险。上海四院通过动态加密和访问控制技术强化敏感信息保护。

  • 符合《上海市医学人工智能工作方案》要求,确保AI应用符合伦理规范,诊疗建议需经医生复核确认。

四、政策推动与行业影响

  1. 政策导向明确
  • 国家卫健委要求2025年三级医院AI辅助诊断全覆盖,多地医院通过部署DeepSeek响应政策,如成都市一院将AI纳入绩效考核指标。
  1. 行业生态协同
  • 医院与华为、商汤等企业合作,共建算力基础设施。上海交大基于昇腾平台部署DeepSeek,推动智慧教学与科研管理升级。

  • 跨院联合研究成为趋势,如瑞金医院开放“创新实验室”,邀请全国医疗机构共享AI研发成果。

五、未来展望:从单点突破到全流程覆盖

  1. 技术融合深化
  • 瑞金医院计划推出多模态融合模型,整合基因组学、影像组学数据,推动个性化治疗。

  • AI将从“诊前-诊中-诊后”全流程渗透,如华山医院探索“人机融合门诊”,候诊效率提升300%。

  1. 普惠医疗加速
  • 基层医院通过接入区域医疗中心的AI平台,共享优质资源。例如,柳州市人民医院计划向县域医联体推广AI应用。

结语
DeepSeek在国内三甲医院的密集部署,标志着医疗AI从技术验证迈向规模化应用。通过临床辅助、流程优化与数据安全三重驱动,医院正以“技术+场景+生态”的协同模式,重塑医疗服务的效率与质量。未来,随着政策支持与技术迭代,AI或将成为医疗行业“新质生产力”的核心引擎。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值