智慧农业 | 60页 | 5G + 智慧农业大数据:开启乡村振兴新征程

5G + 智慧农业大数据:开启乡村振兴新征程

本文主要介绍 5G 与智慧农业大数据在乡村振兴战略中的重要作用,涵盖建设背景、顶层设计、农业大数据建设方案、实施保障以及联通优势等内容,为实现乡村全面振兴提供有力支撑。

1. 建设背景及需求分析

1.1 乡村振兴战略

2022 年中央一号文件对乡村振兴战略全面部署,明确 “三步走” 时间表,旨在让农业、农民、农村迎来全新发展。其主要内容包括 “6 个是、3 个必须、1 个坚持和完善” 。

在这里插入图片描述

当前,实施乡村振兴战略意义重大。农民在生产力和市场竞争中能力不足,新型职业农民队伍亟待建设;农村基础设施与民生领域存在短板,环境和生态问题突出;国家支农体系相对薄弱,农村金融改革任务艰巨;农村基层党建存在薄弱环节,治理体系和能力有待强化;农产品供需存在问题,供给质量亟待提高。实施该战略是解决社会主要矛盾、实现 “两个一百年” 奋斗目标和全体人民共同富裕的必然要求。

1.2 国家大数据战略

国家大数据战略核心在于加快建设数字中国。这需要完善数字基础设施,推进数据资源整合与开放共享,保障数据安全。通过把大数据作为基础性战略资源,助力产业转型升级,推进重点领域大数据采集、整合与应用,深化大数据在各行业的创新应用,完善大数据产业链,加强相关技术攻关和产业生态建设。

2. 乡村振兴顶层设计

2.1 蓝图设计

围绕 “产业兴旺、生态宜居、乡风文明、治理有效、生活富裕、摆脱贫困” 的目标,以实际应用和项目为依托,结合地理信息、大数据、物联网、互联网等技术,完善乡村振兴战略评价指标,重点发展绿色、生态、有机农业,发挥集体经济和新型农业经营主体的作用,推动 “一县一业” 发展,助力精准扶贫。

2.2 产业兴旺

产业兴旺是乡村振兴的重点。一方面,要夯实农业生产能力基础,保护永久基本农田,建设高标准农田,发展数字农业和智慧农业,推进物联网试验示范和遥感技术应用。另一方面,实施质量兴农战略,健全评价、政策、工作和考核体系,发展绿色、优质、特色农业,加强动植物疫病防控和农产品质量安全追溯。还要构建农村一二三产业融合发展体系,促进小农户与现代农业有机衔接,培育新型农业经营主体,打造区域公用品牌 。

2.3 生态宜居

生态宜居是乡村振兴的关键。要统筹山水林田湖草系统治理,健全自然资源保护制度,开展国土绿化行动。加强农村突出环境问题综合治理,防治农业面源污染,推广循环农业模式。建立市场化多元化生态补偿机制,加大重点生态功能区转移支付力度。增加农业生态产品和服务供给,发展乡村生态旅游。

2.4 乡风文明

乡风文明是乡村振兴的保障。加强农村思想道德建设,以社会主义核心价值观为引领,弘扬民族精神和时代精神。传承发展提升农村优秀传统文化,保护农耕文化遗产,挖掘其优秀内涵。加强农村公共文化建设,健全乡村公共文化服务体系,推进文化惠民。开展移风易俗行动,遏制陈规陋习,抵制封建迷信活动。

2.5 治理有效

治理有效是乡村振兴的基础。要加强农村基层党组织建设,深化村民自治实践,建设法治乡村,提升乡村德治水平,建设平安乡村。以网格化管理和现代信息技术为支撑,实现基层服务和管理精细化精准化,推进农村 “雪亮工程” 建设,完善农村土地承包经营纠纷调处机制。

2.6 生活富裕

生活富裕是乡村振兴的根本。优先发展农村教育事业,促进农村劳动力转移就业和农民增收,推动农村基础设施提档升级,加强农村社会保障体系建设,推进健康乡村建设,持续改善农村人居环境,实施数字乡村战略,提升气象为农服务能力和防灾减灾救灾能力。

2.7 摆脱贫困

摆脱贫困是乡村振兴的前提。瞄准贫困人口精准帮扶,对有劳动能力的强化产业和就业扶持,对丧失劳动能力的实施保障性扶贫。聚焦深度贫困地区集中发力,改善生产生活条件,增强贫困农户发展能力。激发贫困人口内生动力,提升其基本技能,引导克服等靠要思想。强化脱贫攻坚责任和监督,加强扶贫资金管理,严肃查处弄虚作假行为。

2.8 制度建设、人才与资金

实施乡村振兴战略,要把制度建设贯穿其中,完善产权制度和要素市场化配置,巩固和完善农村基本经营制度,深化农村土地制度和集体产权制度改革。必须破解人才瓶颈制约,培育新型职业农民,加强农村专业人才队伍建设,鼓励社会各界投身乡村建设,创新人才培育引进使用机制。同时,必须解决钱从哪里来的问题,健全投入保障制度,确保财政投入持续增长,拓宽资金筹集渠道,提高金融服务水平。

2.9 破解人才瓶颈制约

实施乡村振兴战略,必须破解人才瓶颈制约。要把人力资本开发放在首要位置,畅通智力、技术、管理下乡通道,造就更多乡土人才,聚天下人才而用之。

2.10 坚持和完善党的领导

各级党委和政府要把乡村振兴战略摆在优先位置,完善党的农村工作领导体制机制,制定相关条例和规划,加强 “三农” 工作队伍建设,强化规划引领和法治保障,营造良好氛围,分类有序推进乡村振兴。

3. 农业大数据建设方案

3.1 顶层设计

农业大数据服务对象包括农户、合作社、企业、政府部门、科研机构和益农信息社等。通过建设 “三位一体” 信息服务体系,即公益化、社会化、多元化信息服务体系,创新运营、投入和可持续发展机制,提供农业生产经营、网络化服务、精准化生产、农副产品溯源、跨界农业服务等五类服务应用,实现动态分析、预测预警、决策支持和生产监控等功能。

3.2 农业物联网平台

利用物联网技术,实现农业生产环境实时监测及远程智能生产控制,提高生产效率,降低劳动力成本。通过云计算、大数据技术,为农业管理和灾害决策分析提供支撑,展示城市农业科技化成果。平台建设涵盖数据中心和服务平台建设,实现农业企业物联网应用统一接入和管理,建设专家服务平台。基地建设包括设施农业示范基地和农业物联网示范基地建设,开展监测统计和四情监测,利用遥感技术进行作物长势、病虫害等监测。

3.3 农产品质量追溯平台

通过订单农业指导生产,对农产品产前、产中、产后关键节点数据进行管理和追溯。平台功能包括生产管理、加工流程跟踪、销售环节跟踪、溯源查询、运输流程跟踪等,涵盖各类农产品。分项功能有合格证管理、执法监管、农资监管和检验检测管理,实现农资闭环监管和检测数据可追溯。

3.4 电子商务平台

针对个体农产电商亏损问题,创新模式,建设新电商体系和区域电商平台,引入咨询服务团队。系统建设包括区域电商平台建设、生产计划管理系统建设和区域电商与主流电商对接;体系建设涉及政府配套、运营商建设、上下游资源整合;专业咨询团队提供专业支持。B2B 模式面向众多城市终端用户、社区零售店和分销商,提供多种服务;B2C 模式打造网上批发市场和专卖店,与质量安全追溯网对接,实现数据同步和共享,开展涉农培训。

3.5 休闲农业平台

通过搭建农产品上行平台,将农村资源与城市需求匹配,促进小农户与现代农业发展有机衔接。提供多种休闲农业服务,包括庭院养殖、种植、储藏加工和休闲服务,为消费者提供绿色食材、民宿体验等服务,增加农户收益。

3.6 综合门户信息发布平台

提供农业科教、农技推广、业务申报、招商引资等服务,包括企业入驻审批、补贴申报等功能,同时发布农业政策、市场行情等信息,为农业生产和农村发展提供综合服务。

3.7 三资信息平台

实行村务与村级财务网上公开,加强村镇集体资产的管理,丰富村民民主管理形式,拓展招商引资渠道,推动农村经济发展,创新农村治理和服务模式。

3.8 智慧党建平台

通过互联网 +“党建”,建设党务活动、便民服务、基层治理、创业致富等平台,服务党员、群众、社会和经济,拓展支部组织生活时空,创新党员教育管理方式,提升基层党组织凝聚力。

3.9 品牌宣传推广

通过产品包装、门户网站、电商平台、传统媒体、新媒体、体验厅等渠道,对优质农产品等进行宣传推广,开展精准营销,根据年龄、关注媒体、使用 APP、终端设备、消费倾向和地域维度等标签,精准定位目标客户。

3.10 数据整合

整合涉农信息服务,解决数据孤岛、质量参差不齐等问题,实现数据采集自动化、使用智能化、共享便捷化,建立标准数据体系,为大数据模型提供数据源,加强数据安全管理。

3.11 智慧农业体验厅

设置特色产品展示区、指挥大屏、5G+AI+VR 展区和各平台互动展区,利用 5G 技术提供实时农业展示和远程互动培训,为市民、政府、企业等提供农产品安全溯源、农情监测决策等服务。

5G + 智慧农业大数据在乡村振兴中具有巨大潜力,通过各个环节的协同发展,将推动农业现代化,实现乡村全面振兴。期待未来,这一模式能在更多地区落地生根,让乡村焕发出新的活力。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值