- 论文题目:RSRefSeg: Referring Remote Sensing Image Segmentation with Foundation Models
- 论文链接:https://arxiv.org/pdf/2501.06809
- 论文代码:https://github.com/KyanChen/RSRefSeg
摘要
引用式遥感图像分割现有研究通常难以在细粒度语义概念之间建立稳健的对齐关系,导致文本和视觉信息之间的表示不一致。
本文提出引用式遥感图像分割基础模型:RSRefSeg。
- RSRefSeg利用CLIP进行视觉和文本编码,采用全局和局部文本语义作为过滤器,在潜在空间中生成与引用相关的视觉激活特征。
- 这些激活特征随后作为输入提示用于SAM,通过其强大的视觉泛化能力来优化分割掩膜。
在RRSIS-D数据集上的实验结果表明,RSRefSeg优于现有方法,突显了基础模型在增强多模态任务理解方面的有效性。
背景
- 跨模态对齐困难:在文本和视觉模态之间建立细粒度语义对齐时,现有方法难以保持语义概念的一致性,导致文本和视觉信息表达不匹配。
- 多尺度特征表示复杂:遥感图像中存在多尺度目标和复杂的空间关系,尤其是小目标的分割,现有方法难以有效捕捉和表示。
- 跨域迁移性能退化:模型在不同数据集或领域之间迁移时,性能容易下降,难以适应多样化的遥感场景。
- 多基础模型知识整合困难:利用多个预训练模型(如CLIP和SAM)时,如何有效整合和迁移一般知识是一个关键问题。
方法
模型总览
RSRefSeg架构:整合了CLIP和SAM架构,用于遥感图像的引用分割,具备强大的泛化能力和鲁棒性。
- 微调CLIP:提取文本和图像的全局与局部语义嵌入
- AttnPrompter:处理CLIP的特征,生成与引用内容相关的视觉激活特征,并转换为SAM的提示嵌入。
- 微调SAM:利用提示嵌入处理原始图像,生成最终的二值分割掩膜。
Fine-tuned CLIP
引入了低秩微调,通过增加额外的可训练参数来实现,具体公式如下:
原始的CLIP架构在预训练或分类时会产生稀疏的图像和文本表示,通过移除池化层对其进行修改,以保留原始图像特征图和每个文本标记的隐藏状态。
AttnPrompter
为了将CLIP的引用语义信息作为提示整合到SAM中,本文提出了AttnPrompter作为这两个基础模型之间的桥梁。
AttnPrompter利用文本语义作为过滤器,提取与引用表达式相关的关键视觉特征,并通过通道和空间抽象生成SAM所需的提示嵌入(可以解释为表示分割目标的点或框的嵌入)。其构建公式如下:
为SAM设计了两种提示:
- 稀疏提示 Psparse:从 Vattn 提取,表示为点或框的嵌入。通过 1×1 卷积核降通道维度),并通过 3×3 卷积块降采样至 M。
- 密集提示 Pdense:通过全局语义过滤CLIP视觉特征得到粗略掩膜,并进行上采样。
Fine-tuned SAM
SAM处理原始图像和稀疏/密集提示,通过编码-解码过程生成最终的引用分割掩膜。
由于只需要一个分割输出,从SAM的输出中选择第一个生成的掩膜作为最终结果。
为了解决域转移中的语义分布差异,在SAM的复杂编码器中引入了参数微调
实验
数据集
在RRSIS-D数据集上进行了实验:
- 该数据集包含17,402个三元组,每个三元组包括一张图像、一个掩膜和一个引用表达式。
- 数据被分为12,181个训练样本、1,740个验证样本和3,481个测试样本。
- 涵盖了20个不同的语义类别,包括飞机、高尔夫球场、高速公路服务区、棒球场和体育场等。
- 所有图像均被标准化为800×800像素,空间分辨率从0.5米到30米不等。、
实验结果
结论
本文提出了用于引用式遥感图像分割的基础模型RSRefSeg。
- 包含12亿参数
- AttnPrompter架构将CLIP和SAM基础模型连接起来,通过将粗粒度的文本语义激活视觉特征转换为SAM模型的提示输入,从而生成精确的引用掩膜。
在RRSIS-D数据集上的实验评估证明了RSRefSeg各组件的有效性,验证了基础模型在理解多模态遥感任务中的有效性。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。