在生成式AI因不切实际的期望而逐渐降温后,Agentic AI在过去一年中可能已成为最受关注的技术。
Agentic AI比生成式AI更进一步,强调的是运营决策而非内容生成。这种方法对业务流程的潜在影响已促使Aflac、Atlantic Health System、Legendary Entertainment和NASA喷气推进实验室等组织开始采用Agentic AI。
CRM领导者Salesforce已通过宣布Agentforce将其战略重心转向Agentic AI。IT服务管理巨头ServiceNow也在其Now平台中添加了Agentic AI。微软和其他公司也加入了这一行列。
随着Agentic AI在众多场景和平台中出现,对这项技术感兴趣的组织可能难以确定从何处开始。根据AI专家的说法,目前已有一些最受欢迎的应用场景。
安永全球创新AI官员Rodrigo Madanes表示,Agentic AI将与ERP、CRM和商业智能系统无缝集成,以自动化工作流程、管理数据分析并生成有价值的报告。与过去的一些自动化技术不同,Agentic AI可以实时做出决策,使流程自动化成为主要应用场景。
"Agentic AI可以自动执行以前需要人工干预的重复性任务,如客户服务、供应链管理和IT运营,"Madanes说。“这项技术的与众不同之处在于其能够适应不断变化的条件,并在没有人工监督的情况下处理意外输入。”
本文将为您展示AI专家眼中Agentic AI的十大商业应用场景和十大工具。
十大商业应用场景
1
软件开发
Agentic AI有望将AI编码助手或副驾驶转变为更智能的软件开发工具,能够编写大段代码。虽然编码助手迄今为止获得了褒贬不一的评价,但分析公司Gartner预测,更智能的Agentic AI将在三年内编写大部分代码,导致大多数软件工程师需要重新学习技能。
数字转型咨询公司Publicis Sapient的执行副总裁兼首席产品官Sheldon Monteiro表示,编码代理不仅会编写代码,还会有单独的代理检查代码错误。因为DevOps工具链已经实现了工作流程自动化,引入Agentic AI是水到渠成的发展。这些Agent能够自主执行代码反向工程以提取规范,根据规范自动生成测试用例和代码,并对符合预设质量标准的构件进行自动审批,从而显著提升了端到端自动化的效率和完整性。
包括MITRE在内的众多组织已部署AI Agent以增强软件开发流程。MITRE首席技术官Charles Clancy透露,MITRE已开发出自己的代码管理Agentic AI。
他补充说,在实践中表现最为出色的应用场景是代码存储库管理,AI Agent能够自动检测并修复存储库中的代码缺陷。比如,10年前的源代码可能无法在现代计算机上正常编译,但是Agentic AI就会把它下载下来,尝试构建;如果它不运行,Agentic AI会修复构建脚本和必要的代码,将代码检回存储库,并标记这是由Agentic AI完成的。
比如,10年前的源代码在现代环境中往往难以编译,而Agentic AI能够自动获取这些代码,尝试构建,并在遇到问题时主动修复构建脚本和相关代码缺陷,然后将修复后的代码提交回存储库,同时明确标记这些更改是由Agentic AI完成的。这种自动化修复流程大大提高了历史代码的可用性。
2
增强版RPA
许多组织已经在使用机器人流程自动化(RPA)来自动执行多个领域中的简单和重复性任务。Agentic AI也可以自动执行任务,而且它们还可以处理需要更高级决策功能的复杂问题,Publicis Sapient的Monteiro表示。
他解释,借助AI,RPA超越了基于规则的操作,转向适应性强的自主流程,显著提高了业务运营的效率。新一代工具使我们能够训练AI Agent不仅执行RPA、所能完成的基础任务,还能够理解和处理复杂情境中的例外逻辑,把握其中的细微差别和适用条件。
一些AI专家预测,Agent将承担比RPA能处理的更复杂的任务,有时Agent会与RPA一起工作以达到新的自动化水平。
IBM MIT AI实验室的AI研究科学家Shae Khan表示,许多组织将很快使用AI来增强RPA,在某些情况下,取代传统RPA。Agentic AI将用于处理需要决策能力的复杂和动态任务,而RPA将继续用于重复性、基于规则的流程。
3
客户服务自动化
长期以来,组织主要依靠简单的聊天机器人和语音机器人处理基础客户服务请求。现在,Agentic AI正在将客户服务自动化提升到新高度,远超回答常见问题的基本功能。
Gartner 预测,到 2029 年,Agentic AI将在无需人工干预的情况下解决 80% 的常见客户服务问题。与依赖预编程脚本和关键词的传统聊天机器人不同,Agentic AI从上下文中学习,适应独特的客户需求,并提出并实施解决方案。
Genesys首席技术官Glenn Nethercutt认为,Agentic AI的核心特征在于其自主执行基于推理的、多步骤且非确定性任务的能力,能够在无人工指导的情况下处理复杂且需要适应性的决策过程。
这类客户服务Agent将广泛应用于零售、金融服务和IT服务台等多个行业和功能领域。与传统的高度定制化机器人不同,Agentic A能够理解并针对广泛的客户需求提供具有上下文关联性的解决方案。
比如说,如果一个客户就延迟发货问题联系客服时,传统聊天机器人可能只能提供跟踪信息或将问题升级给人工处理,而Agentic AI可以:访问和分析实时运输数据;确定延迟的原因;提供解决方案,如加急替换订单或部分退款;独立更新记录并执行所选的解决方案。
未来的发展方向是建立可执行操作的完整目录,并配合足够智能的AI系统进行处理,同时实施日益完善的安全护栏机制来确保系统安全可靠。
4
自动化企业工作流程
随着ServiceNow、Salesforce和其他供应商采用Agentic AI,企业工作流程将成为该技术的一个重要领域,专家表示,使企业能够通过自动化常规任务来简化流程。
Monteiro举例,Agentic AI可以在没有人工输入的情况下将会议记录转化为项目工单,或者根据需求-供应预测触发供应商订单。
他补充说,在整个业务中部署来自大型供应商的IT工具的组织应该比使用可能需要通过API链接的各种解决方案的公司具有优势。对企业来说,汇集所有数据并避免信息孤岛将很重要。
"对CIO来说正在形成的问题是,你将委托谁来构建你的上下文存储,这是你对企业如何运作的深入了解?"他补充道。“想想你对企业的所有了解。如果你的LLM实际上了解你的企业如何运作的全部情况会怎样?”
他进一步指出,采用大型供应商整合IT工具的组织相比使用多种需要API互连的解决方案的企业将具有明显优势。对企业而言,整合所有数据并消除信息孤岛将成为关键战略。
当前CIO面临的核心问题是如何选择合适的合作伙伴来构建企业上下文存储库,这一存储库需要全面深入地理解企业运营模式。若能让大语言模型(LLM)充分理解企业的整体运作机制,将为组织带来显著的竞争优势。
5
网络安全和威胁检测
2024 年发现了超过 30,000 个新漏洞 – 同比增长 17%。随着网络威胁数量和复杂性的增加,Agentic AI正成为增强安全态势的关键盟友。它的表现优于传统安全工具,如防火墙和防病毒软件,提供了新水平的自动化防御。
例如,它提供了强大的威胁检测系统。Agentic AI可以分析应用程序代码、网络流量、用户行为和系统日志等因素,以标记异常或可疑模式。AI 代理然后可以根据风险级别对这些漏洞进行优先排序,并自动应用补丁或推荐修复方案,缩小攻击者的机会窗口。
网络安全提供商已经开始部署Agentic AI来检测和应对威胁。Monteiro认为,网络安全领域中的Monteiro可以自主检测、反应甚至缓解近乎实时的安全和欺诈威胁,减少对潜在攻击的响应时间并增强整体安全性。
此外,根据Agentic AI供应商Beam的说法,Agentic AI可以启用适应特定威胁和漏洞的个性化安全协议。这种Agent自动化确保了更强大的防御机制。
根据Beam的说法,Agentic AI还可以通过自动化常规任务和安全响应来提高效率并节省成本。
6
生产力提升
全球律师事务所Avantia结合商业和开源生成式AI技术为其Agentic AI提供支持,这些Agent无缝集成于Microsoft Word或Outlook等办公软件中,能够随时响应并执行各类法律相关任务。
Avantia首席技术官Paul Gaskell表示,律师行业的关键挑战是在太多地方有太多单独的任务,有数百个任务可能不是特别适合自动化,也不太适合SaaS解决方案。
这种技术带来的业务优势体现在律师能够加速合同处理流程,提高客户响应速度,并加快交易完成时间。当律师在Outlook或Word中工作时,Agentic AI可以访问公司数据库,并根据律师历史工作模式提供支持,从而优化工作流程。
金融服务和医疗保健技术公司SS&C也采用了Agent自动化业务流程。该公司每月需处理来自2万个客户的数百万份文档,这些文档以电子邮件和PDF等多种格式提交。目前,SS&C已开发了20个与文档交互的Agentic AI应用场景。
该系统于2024年中期投入生产,并在当年11月处理了5万份文档。自动化高级董事总经理Brian Halpin表示,使用传统自动化,人类几乎需要查看每一份文档;但使用Agent,自动化百分比在90%以上,只有少量文档需要人工审核。
7
报告生成
编写文本和创建图像是生成式AI最早流行的两个用例。现在,Agentic AI可以加速内容创建过程。例如,安永在其第三方风险管理服务中使用Agentic AI。
安永的负责人Sinclair Schuller介绍,以往客户聘请安永来评估引入的某个供应商时,安永的风险评估员需要在一个供应商上花费多达50小时,仔细研究合同和其他文档,以产生一份报告,指出他们观察到的风险。而现在,目前,人类专家主要是负责审核并完善AI生成的报告内容。
人类专家向AI提供所有联系人和公共文档,AI可以在几分钟内而不是几天内生成一份报告,具有极高的准确性和详细程度。AI加上人类专业知识极大地提高了质量。
现在,随着Agentic AI的出现,这个过程再次发生变化。安永将发布一个Agent驱动的流程版本来评估供应商,对供应商进行持续监控。这在以前是不可能做到的。
Schuller总结说,Agentic AI的价值不仅仅是优化用例,而在于市场和收入机会的扩展。
8
人力资源和员工支持
IBM在1月份关于生成式AI开发的调查得出结论,43%的公司将Agentic AI用于人力资源。
Agentic AI能够自动化招聘流程的关键环节,包括根据预设标准高效筛选简历、智能安排与符合条件的候选人面试,以及通过聊天或电子邮件与潜在申请者进行主动互动和吸引,从而显著提升人才获取效率。整个过程有助于简化招聘流程,减少人工工作量,并帮助招聘人员更快、更高效地专注于顶尖人才。
Agentic AI的另一个相对低风险、高价值的用例是回答员工问题并代表他们处理简单任务。例如,全球数据服务公司Indicium在2024年中期开始部署Agentic AI,当时该技术开始成熟。该公司的首席数据官Daniel Avancini认为,我们将看到越来越多的现成应用程序出现,包括开源和专有解决方案,这些工具将大大简化构建过程。
这些Agent用于简化人力资源工作,包括内部知识检索、标记和记录等任务,以及其他业务流程。每个Agent就像一个微服务,专注于一件特定的事情;而且它们都在多Agent系统中相互交流。
这些基于提示的对话可能会变得奇特。棘手的是,可能会出现幻觉和生成式AI带来的所有其他问题。因此Daniel指出,需要对模型进行大量调整,以便它们不做错事或访问错误的信息。
可喜的是,Agentic AI可以自主处理很多问题。Indicium正在发现许多之前未被妥善记录的问题,这可帮助他们不断完善工作流程。
9
商业智能
Agentic AI将产生重大影响的另一个领域是商业智能。
Zenlytic的联合创始人兼首席执行官Ryan Janssen指出,虽然BI仪表板相对简单易用,但获取超出标准类别的见解通常需要数据团队的工作来提取。与BI解决方案配对的Agentic AI可以让更多员工获得有用的分析。例如,BI的Agentic AI可以建议营销团队在哪里花费预算,或者根据在餐巾纸上画的示例创建图表。
理解语音输入的Agentic AI还可以根据口头问题生成业务数据洞察,例如回答"我们的前三个营销渠道是什么?"这类问题。
Janssen解释,这是一个看似简单但实际上含义模糊的问题。与传统聊天机器人相比,AI Agent的优势在于能够主动消除歧义。当面对"顶级"这样模糊的概念时,设计良好的Agent会识别出模糊性,并主动说:“请稍等,这个问题不够明确,我需要使用工具来澄清您的意图。”’
当前许多组织刚刚踏上Agentic AI还应用之旅,还有数百种潜在用途有待发掘。编程辅助成为早期应用场景是因为编程工作细节繁多且耗时,而现在编程爱好者已开始借助这些编码助手构建应用程序。
nssen认为,这类工具的最佳应用场景是那些繁琐、工作量大或需要高度专注于细节的任务;当多个AI Agent能够串联协作并形成有组织的工作流时,企业将迎来真正的突破性进展。
10
优化供应链管理和物流效率
Agentic AI 通过自主分析实时数据、做出决策并执行行动来优化供应链管理和物流效率,从而增强采购、库存、路线规划、风险管理和整体运营弹性。以下是Agentic AI主要通过以下方式推动这些改进:
- 实时动态采购。Agentic AI主动式 AI 持续监控不断变化的市场条件、供应商能力和需求信号,以动态优化采购决策。它自主调整采购策略,与供应商谈判,并在无需人工干预的情况下缓解风险,实现更灵活和更具成本效益的供应链。
- 库存优化。通过整合传感器数据、位置跟踪和需求预测,Agentic AI在各个 SKU 中维持最佳库存水平。它使用多样化的数据源(如物联网设备和市场趋势)预测需求变化,并自动化补货流程,减少缺货、过度库存和持有成本。
- 物流和路线优化。Agentic AI通过分析交通、天气、燃料价格和司机可用性的实时数据来优化配送路线,动态重新规划运输路线,以确保最快、最具成本效益的路径,减少延误、燃料消耗和运营成本。
- 自主风险管理和中断响应。Agentic AI实时检测供应链中断,如工厂停工、天气事件或地缘政治问题。它自主重新规划运输路线,调整生产计划,并与承运商或供应商谈判,以最大限度地减少延误并维持交付时间表,从而增强供应链弹性。
- 预测性维护。使用物联网传感器数据和设备日志,Agentic AI在故障发生之前预测潜在故障,实现主动维护调度。这减少了停机时间和维修成本,确保了更顺畅的物流和生产运营。
- 工作流自动化和增强协作。Agentic AI自动化重复性任务,如货物跟踪、仓库库存管理和订单履行。它还促进了供应链合作伙伴之间的无缝沟通和数据共享,改善了整个生态系统的协调和决策。
十大商业Agentic AI工具
Agentic AI技术有望通过提升自动化水平和运营效率,彻底变革各行各业。为充分利用这一技术,企业需要采用合适的工具。以下是基于功能特性、价格和用户评价精选的十大商业Agentic AI工具。
| 工具 | 核心功能 | 价格 | 最适合 |
|---|---|---|---|
| IBM智能AI解决方案 | 迭代推理、环境交互、目标导向决策 | 企业定制价格 | 大型企业 |
| 微软Power Automate | 工作流自动化、AI驱动决策 | $15/用户/月 | 中小型企业 |
| 谷歌云AI平台 | 机器学习、自动化决策 | 企业定制价格 | 大型企业 |
| 亚马逊SageMaker | 机器学习、自动化决策 | 企业定制价格 | 大型企业 |
| Salesforce Einstein | AI驱动决策、自动化工作流 | $50/用户/月 | 中小型企业 |
| Zoho CRM | AI驱动决策、自动化工作流 | $12/用户/月 | 小型企业 |
| Pipedrive | AI驱动决策、自动化工作流 | $15/用户/月 | 中小型企业 |
| HubSpot CRM | AI驱动决策、自动化工作流 | 提供免费计划,高级功能$50/用户/月 | 中小型企业 |
| Freshworks CRM | AI驱动决策、自动化工作流 | $12/用户/月 | 小型企业 |
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

1048

被折叠的 条评论
为什么被折叠?



