Transformer网络的魔改结构与应用领域
自从Transformer架构在2017年被提出以来,它已经成为深度学习领域的一项革命性技术。Transformer最初应用于自然语言处理(NLP),但由于其强大的建模能力和并行处理优势,迅速在各个领域扩展,并演化出许多变体。本文将综述一些Transformer网络的变体及其在不同应用领域的应用情况。
Transformer的基础架构
- Transformer架构主要由自注意力机制(Self-Attention)和前馈神经网络组成,具有良好的并行化特性。
- 它使用多头注意力机制(Multi-Head Attention)来捕捉输入序列中不同位置之间的依赖关系。
- 位置编码(Positional Encoding)用于保留序列的顺序信息。
- 这种架构在消除序列模型中常见的长距离依赖问题方面表现出色。
Transformer的变体
-
BERT(Bidirectional Encoder Representations from Transformers)
- 由谷歌推出的一种双向Transformer模型。
- 通过在海量文本数据上进行无监督的预训练,再通过微调适应具体任务。
- 通过掩码语言模型(Masked Language Model)和下一句预测任务增强了对上下文的理解能力。
-
GPT(Generative Pre-trained Transformer)
- 由OpenAI开发,专注于生成任务。
- 采用自回归生成方式,通过学习文本生成的条件概率来生成高质量的文本。
- GPT-3具备生成丰富语言内容的能力,并在零样本、少样本任务中表现出色。
-
Transformer-XL
- 引入段级递归