Transformer网络的魔改结构与应用领域


自从Transformer架构在2017年被提出以来,它已经成为深度学习领域的一项革命性技术。Transformer最初应用于自然语言处理(NLP),但由于其强大的建模能力和并行处理优势,迅速在各个领域扩展,并演化出许多变体。本文将综述一些Transformer网络的变体及其在不同应用领域的应用情况。

Transformer的基础架构

在这里插入图片描述

  • Transformer架构主要由自注意力机制(Self-Attention)和前馈神经网络组成,具有良好的并行化特性。
  • 它使用多头注意力机制(Multi-Head Attention)来捕捉输入序列中不同位置之间的依赖关系。
  • 位置编码(Positional Encoding)用于保留序列的顺序信息。
  • 这种架构在消除序列模型中常见的长距离依赖问题方面表现出色。

Transformer的变体

  1. BERT(Bidirectional Encoder Representations from Transformers)

    • 由谷歌推出的一种双向Transformer模型。
    • 通过在海量文本数据上进行无监督的预训练,再通过微调适应具体任务。
    • 通过掩码语言模型(Masked Language Model)和下一句预测任务增强了对上下文的理解能力。
      在这里插入图片描述
  2. GPT(Generative Pre-trained Transformer)

    • 由OpenAI开发,专注于生成任务。
    • 采用自回归生成方式,通过学习文本生成的条件概率来生成高质量的文本。
    • GPT-3具备生成丰富语言内容的能力,并在零样本、少样本任务中表现出色。
  3. Transformer-XL

    • 引入段级递归
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值