使用贝叶斯估计更新显函数参数

问题设定

假设我们有以下映射关系:

f ( x ) = θ 1 × exp ⁡ ( − y − exp ⁡ ( − y ) ) f(x) = \theta_1 \times \exp(-y - \exp(-y)) f(x)=θ1×exp(yexp(y))

其中

y = θ 1 × ( x − θ 2 ) y = \theta_1 \times (x - \theta_2) y=θ1×(xθ2)

我们将对参数 θ 1 \theta_1 θ1 θ 2 \theta_2 θ2 进行贝叶斯更新。

数据

假设新的数据点为:

D = { ( x 1 , f 1 ) , ( x 2 , f 2 ) , … , ( x 5 , f 5 ) } D = \{(x_1, f_1), (x_2, f_2), \ldots, (x_5, f_5)\} D={(x1,f1),(x2,f2),,(x5,f5)}

步骤

1. 定义先验分布

选择参数的先验分布。假设 θ 1 \theta_1 θ1 θ 2 \theta_2 θ2的先验是正态分布:

θ 1 ∼ N ( μ 1 , σ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值