问题设定
假设我们有以下映射关系:
f ( x ) = θ 1 × exp ( − y − exp ( − y ) ) f(x) = \theta_1 \times \exp(-y - \exp(-y)) f(x)=θ1×exp(−y−exp(−y))
其中
y = θ 1 × ( x − θ 2 ) y = \theta_1 \times (x - \theta_2) y=θ1×(x−θ2)
我们将对参数 θ 1 \theta_1 θ1 和 θ 2 \theta_2 θ2 进行贝叶斯更新。
数据
假设新的数据点为:
D = { ( x 1 , f 1 ) , ( x 2 , f 2 ) , … , ( x 5 , f 5 ) } D = \{(x_1, f_1), (x_2, f_2), \ldots, (x_5, f_5)\} D={(x1,f1),(x2,f2),…,(x5,f5)}
步骤
1. 定义先验分布
选择参数的先验分布。假设 θ 1 \theta_1 θ1 和 θ 2 \theta_2 θ2的先验是正态分布:
θ 1 ∼ N ( μ 1 , σ