摘要
本篇博客介绍了BLIP-2 ,这是一种面向通用多模态任务的高效视觉语言预训练框架,其核心思想是在冻结大语言模型的前提下,通过引入一个可训练的查询变换器(Q-Former),实现视觉特征与语言输入之间的有效桥接。该方法针对传统多模态模型训练成本高、跨模态对齐难的问题,提出了一个两阶段架构:首先训练一个融合视觉信息的 Q-Former,以少量计算资源学习从图像中提取语言相关的视觉语义;其次将其输出作为提示输入,引导大语言模型完成图文理解、图像问答等下游任务。这种解耦式设计不仅显著降低了训练资源需求,还提升了模型在零样本和指令跟随任务中的表现。实验结果显示,BLIP-2 在多个标准数据集上取得了领先性能,尤其在零样本图文任务中展现出优越的泛化能力。尽管如此,该方法仍存在视觉语言对齐粒度不足、模型推理效率受限等问题。未来可在增强对话式能力、多轮推理以及端到端语义对齐方面进一步优化。
Abstract
This blog introduces BLIP-2, an efficient vision-language pretraining framework designed for general-purpose multimodal tasks. Its core idea is to bridge visual features and language inputs by introducing a trainable Querying Transformer (Q-Former), while keeping a large language model (LLM) frozen. To address the high training cost and difficulty of cross-modal alignment in traditional multimodal models, BLIP-2 adopts a two-stage architecture: first, the Q-Former is trained to extract language-relevant visual semantics from images using minimal computational resources; second, its outputs are used as prompts to guide the frozen LLM in downstream tasks such as image-text understanding and visual question answering. This decoupled design not only reduces training cost significantly but also improves performance in zero-shot and instruction-following tasks. Experimental results demonstrate that BLIP-2 achieves state-of-the-art performance across multiple benchmarks, with strong generalization in zero-shot image-language tasks. Nonetheless, limitations remain in terms of fine-grained visual-language alignment and inference efficiency. Future improvements may focus on enhancing dialog capabilities, multi-step reasoning, and end-to-end semantic alignment.
文章信息
Title:BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
Author:Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi
Source:https://arxiv.org/abs/2301.12597
引言
随着大规模预训练模型在自然语言处理(NLP)和计算机视觉(CV)中的成功,跨模态学习(vision-language learning)逐渐成为人工智能研究的核心方向之一。如何将视觉与语言信息有效融合,是实现智能系统多模态理解能力的关键。
多模态模型最近几年蓬勃发展,但一直无法解决一个痛点:
追求更好的性能,通常意味着需要更大的网络架构(image encoder 和 text encoder/decoder)和数据集,导致更大的训练代价,如何降低模型训练成本,同时具有很好的性能,这是 BLIP-2 的研究动机。
本文介绍的BLIP-2提出的方法基于现有高质量视觉模型及语言大模型进行联合训练,为减少计算量及防止遗忘,作者对预训练模型进行frozen,为了将两任务对齐,作者提出Querying Transfo

最低0.47元/天 解锁文章
1415

被折叠的 条评论
为什么被折叠?



