图神经网络应用于时间序列异常检测

欢迎关注,专注学术论文、机器学习、人工智能、Python技巧

最近,图神经网络技术应用到时间序列的分析,引起了学术界广泛的研究兴趣。本次文章分享两篇最近阅读的,图神经网络用于时间序列异常检测的论文。

首先对于多变量时间序列,我们可以将其看作一个矩阵图片 ,由k个变量,n个时刻组成,由于异常通常是少见的,大部分异常检测方法的套路是采用正常数据来进行建模,测试数据来的时候代入训练好的模型,去看预测误差或者重构误差,然后卡个阈值,超过给定阈值即认为发生异常了。

MTAG-GAT

该文章发表在ICDM 2020,论文题目为:Multivariate time-series anomaly detection via graph attention network。

该文的亮点在于从数据矩阵X的两个维度考虑了图神经网络的结合

在这里插入图片描述

  • 从变量角度,一条时间序列(单变量)可以对应图上一个节点

  • 从时间角度,同一个时刻的数据向量(多变量)可以对应图上一个节点

利用图注意力网络进行特征提取

图片

换个角度理解,其实就是从时间维度和变量维度对数据进行了滤波

得到的这两种角度的特征加上原始特征一起用于后续的任务

  • 预测误差:t时刻以前的数据预测t时刻数据,预测值与实际值的误差

  • 重构误差:自编码器提取隐变量,最小化编码前和解码后的数据误差

目标函数综合考虑了预测预测和重构误差,训练得到的模型用于infer时将两个支路的预测(预测值和重构概率)进行整合得到一个score,当这个score超过一定阈值就判断为异常。

GDN

该文章发表在AAAI 2021,论文题目为:Graph neural network-based anomaly detection in multivariate time series。

该文章的亮点在于挖掘了多变量时间序列中变量之间的连接关系,即把每一条时间序列看作是图上一个节点,但是节点之间的连接关系是靠学习出来的,而不是简单假设为全连接图(MTAD-GAT)。

图片

假设每个节点除了自身时间序列特征,还可以额外用一个embedding图片来表示,这样就可以根据embedding之间的相关性来判断两个节点是否存在连接,然后取Top K来构造邻接矩阵即可。

图片

有个图结构后,利用图注意力网络来进行特征提取,其中注意力系数的计算同时考虑原始时间序列(的线性变换)和额外的这个embedding

图片

输出层为图神经网络提取后的特征逐元素乘以额外的embedding向量,再通过全连接层

图片

最后优化的目标函数为预测误差。即原始特征为t时刻以前的数据

图片

预测输出为t时刻的数据图片

训练好模型后,根据每个变量的预测误差,进行鲁棒标准化,再选择所有变量中最大的指标作为最终的分数,再来跟阈值作比较。


学习交流

目前开通了技术交流群,群友超过500人,添加时最好备注形式为:来源+兴趣方向,方便找到志同道合的朋友

  • 方式1、发送如下图片至微信,长按识别,关注后台回复:加群;
  • 方式2、微信搜索公众号:机器学习社区,关注后台回复:加群;

扫描关注

  • 0
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 神经网络和LSTM都可以用于异常检测,但它们的用场景和具体实现有所不同。 神经网络用于处理具有复杂拓扑结构的数据,例如社交网络、通信网络等。神经网络可以对节点和边进行特征提取和表示学习,从而捕捉数据中的关键信息,并将其用于异常检测。例如,可以使用神经网络对社交网络中的用户行为进行建模,并检测出异常的行为。 LSTM适用于处理序列数据,例如时间序列数据。LSTM可以学习时间序列中的长期依赖关系,从而对异常数据进行检测。例如,可以使用LSTM对股票价格进行建模,并检测出异常的价格波动。 总之,神经网络和LSTM都可以用于异常检测,具体用取决于数据的类型和特征。 ### 回答2: 神经网络和LSTM都是常见的深度学习模型,可以用于异常检测任务。神经网络通过对结构进行建模,能够捕捉数据中的复杂关系和依赖关系。LSTM是一种循环神经网络,具有长期记忆和短期记忆的能力。 对于异常检测任务,神经网络可以用于建模复杂的数据,例如社交网络、交通网络等。它可以从节点之间的连接关系和属性信息中提取结构中的重要特征,进而用于异常检测。通过学习正常数据的表示,如果神经网络在未见过的数据上的预测结果与实际数据差异较大,则可以判断该样本可能是异常数据。 而LSTM模型则可以用于时间序列数据的异常检测。由于LSTM具有循环神经网络的记忆能力,可以捕捉数据之间的时间相关性。该模型可以从之前的时间步骤中记忆并将其用于当前的预测中,从而识别异常的时间点。通过比较实际观测值和LSTM预测值之间的差异,可以确定是否存在异常。 综上所述,神经网络和LSTM都可以用于异常检测任务,但适用于不同类型的数据。神经网络适合处理结构数据,而LSTM适合处理时间序列数据。在实际用中,可以根据数据的特点选择合适的模型进行异常检测,以提高检测准确性和效率。 ### 回答3: 神经网络(Graph Neural Networks,简称GNN)和长短期记忆网络(Long Short-Term Memory,简称LSTM)都是机器学习领域中用广泛的模型,它们在不同的问题领域都有各自的优势。 对于异常检测任务而言,神经网络可以很好地捕捉到数据中的结构信息和关联关系,因此对于具有复杂拓扑结构的数据集来说,神经网络是一种非常适合的模型。在进行异常检测时,可以将异常的样本作为节点进行建模,使用神经网络来学习正常样本的特征表示,并通过判断节点的误差或异常程度来判定异常样本。神经网络可以通过自适地更新节点的特征表示来有效地捕捉到异常的特征模式,因此在异常检测任务中具有很高的可行性。 与此相比,LSTM是一种适用于序列数据建模的模型,在自然语言处理、时间序列分析等领域被广泛用。在异常检测中,可以将时间序列作为输入,使用LSTM来学习数据的时序模式,并通过判断当前数据点与其预测值之间的误差来判定是否为异常样本。LSTM通过自带的门控机制可以有效地处理长期依赖关系,能够更好地捕捉到时序数据中的隐含模式,因此在异常检测任务中也具备较高的可行性。 需要注意的是,神经网络和LSTM在异常检测中的可行性需要根据具体的数据情况来确定。对于拓扑结构清晰、规模较小的数据集,LSTM可能会更为适用;对于复杂的结构数据集,神经网络可能会更具优势。此外,还可以考虑将两种模型进行组合,以充分利用它们各自的优点,提升异常检测的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值