大模型 | RAG 中的混合搜索:使用组合技术增强信息检索

检索器增强生成(RAG)中的混合搜索结合了不同的搜索技术,以提高从数据库或知识库中检索信息的准确性和效率。通常,混合搜索方法利用传统的基于关键字的搜索(稀疏检索)和语义搜索(密集检索),以充分利用这两种方法的优势。以下是对 RAG 中混合搜索的详细介绍。

一、关键部件

稀疏检索: 稀疏检索通过关键字匹配进行,利用TF-IDF、BM25等技术,根据确切的关键字匹配搜索文档。对于已知确切术语的精确查询,这种方法既快速又有效。

在LangChain中实现BM25检索,你可以使用rank_bm25库来进行BM25算法的实现。以下是一个简要的示例,展示了如何将BM25检索与LangChain集成。

首先,你需要安装rank_bm25langchain库:

pip install rank_bm25 langchain
from langchain import VectorstoreRetriever
from rank_bm25 import BM25Okapi
from langchain.document_loaders import SimpleDocumentLoader
from langchain.embeddings import BM25Embeddings

假设你有一组文档,你可以将它们加载到LangChain中:

documents = [
    "The quick brown fox jumps over the lazy dog.",
    "Never jump over the lazy dog quickly.",
    "The quick red fox leaps over the lazy dog."
]

# 分词(tokenize)文档
tokenized_docs = [doc.split(" ") for doc in documents]

初始化BM25模型:

bm25 = BM25Okapi(tokenized_docs)``   

使用BM25模型进行查询检索:

query = "quick fox"
tokenized_query = query.split(" ")
doc_scores = bm25.get_scores(tokenized_query)

# 获取排名最高的文档
top_n = 3  # 假设获取前三个最相关文档
top_docs = bm25.get_top_n(tokenized_query, documents, n=top_n)

print("Top documents:", top_docs)

为了将BM25检索与LangChain集成,可以创建一个自定义的检索器(Retriever):

class BM25Retriever(VectorstoreRetriever):
    def __init__(self, documents):
        self.documents = documents
        tokenized_docs = [doc.split(" ") for doc in documents]
        self.bm25 = BM25Okapi(tokenized_docs)

    def get_relevant_documents(self, query):
        tokenized_query = query.split(" ")
        doc_scores = self.bm25.get_scores(tokenized_query)
        top_docs = self.bm25.get_top_n(tokenized_query, self.documents, n=3)
        return top_docs

# 使用自定义的BM25检索器
retriever = BM25Retriever(documents)

query = "quick fox"
relevant_docs = retriever.get_relevant_documents(query)
print("Relevant documents:", relevant_docs)

密集检索: 密集检索利用嵌入(向量表示)来理解查询和文档的上下文和含义,这使得即使查询中不存在确切的关键字,也能检索到相关信息。向量相似度则通过余弦相似度或欧几里得距离等指标来衡量查询和文档向量之间的相似性。

二、混合搜索的工作原理

索引: 文档使用稀疏和密集方法进行索引。稀疏索引涉及传统的倒排索引,而密集索引则通过BERT或句子转换器等模型为文档创建嵌入。

查询处理: 查询同时使用基于关键字的技术处理,并转换为用于语义搜索的嵌入。

检索: 稀疏检索通过执行基于关键字的搜索,检索与查询词匹配的文档;而密集检索则搜索嵌入与查询嵌入相似的文档,捕获语义含义。

分数融合: 结合稀疏和密集结果混合搜索的关键步骤是将稀疏和密集检索结果融合。通过将两种方法的分数归一化并结合,使用参数alpha(α)加权,决定各算法的权重并影响结果的重新排名。混合评分公式为:hybrid_score = (1−α)⋅sparse_score + α⋅dense_score。

α的取值通常介于0和1之间:

  • α = 1:纯向量搜索
  • α = 0:纯关键字搜索

这种加权组合确保同时考虑关键字相关性和语义上下文,提供一组平衡且全面的结果。

三、混合搜索的优点

提高召回率和精确度: 通过将关键字匹配与语义理解相结合,混合搜索增加了检索到相关文档的可能性,单独使用这两种方法可能会遗漏这些文档。

处理同义词和上下文: 密集检索有助于理解同义词和上下文,确保相关文档不会因词汇不匹配而被忽视。

效率: 稀疏检索通常更快,可以快速缩小文档集的范围,而密集检索则可以优化此集以确保语义相关性。

鲁棒性: 混合搜索对不同类型的查询更具鲁棒性,无论它们是精确的基于关键字的查询,还是更抽象且依赖于上下文的查询。

四、在RAG中的实现

向量数据库: FAISS、Milvus、Weviate或Pinecone等工具用于高效处理密集向量搜索。

预训练模型: BERT、RoBERTa或Sentence Transformer等模型用于生成密集检索的嵌入。

搜索技术:

  • 密集检索技术: 利用嵌入和向量相似度量来查找语义相关的文档。这通常是通过预训练模型将文本转换为高维向量来实现。

  • 稀疏检索技术: 使用传统的关键字匹配和布尔运算符,根据精确的关键字匹配检索文档。可通过TF-IDF或BM25等方法实现,这些方法可以使用scikit-learn、gensim或rank_bm25库等工具。

RAG框架: 如LangChain等框架可以将这些组件整合到一个有凝聚力的RAG系统中。

#!pip install rank_bm25 langchain scikit-learn

from rank_bm25 import BM25Okapi
from langchain.vectorstores import SimpleVectorStore
from langchain.retrievers import VectorstoreRetriever

documents = [
    "向量数据库:FAISS、Milvus、Weviate或Pinecone等工具用于高效处理密集向量搜索。",
    "预训练模型:BERT、RoBERTa或Sentence Transformer等模型用于生成密集检索的嵌入。",
    "密集检索技术:利用嵌入和向量相似度量来查找语义相关的文档。",
    "稀疏检索技术:使用传统的关键字匹配和布尔运算符,根据精确的关键字匹配检索文档。",
    "RAG框架:如LangChain等框架可以将这些组件整合到一个有凝聚力的RAG系统中。",
]

# 分词(tokenize)文档
tokenized_docs = [doc.split(" ") for doc in documents]

bm25 = BM25Okapi(tokenized_docs)

query = "混合搜索 RAG 优势"
tokenized_query = query.split(" ")
doc_scores = bm25.get_scores(tokenized_query)

# 获取排名最高的文档
top_n = 3  # 获取前三个最相关文档
top_docs = bm25.get_top_n(tokenized_query, documents, n=top_n)

print("检索到的相关文档:")
for idx, doc in enumerate(top_docs):
    print(f"{idx + 1}. {doc}")

class BM25Retriever(VectorstoreRetriever):
    def __init__(self, documents):
        self.documents = documents
        tokenized_docs = [doc.split(" ") for doc in documents]
        self.bm25 = BM25Okapi(tokenized_docs)

    def get_relevant_documents(self, query):
        tokenized_query = query.split(" ")
        return self.bm25.get_top_n(tokenized_query, self.documents, n=3)

# 使用自定义的BM25检索器
retriever = BM25Retriever(documents)

query = "混合搜索 RAG 优势"
relevant_docs = retriever.get_relevant_documents(query)

print("通过LangChain集成的BM25检索到的相关文档:")
for idx, doc in enumerate(relevant_docs):
    print(f"{idx + 1}. {doc}")

代码的输出结果:‍

检索到的相关文档:
1. RAG框架:如LangChain等框架可以将这些组件整合到一个有凝聚力的RAG系统中。
2. 向量数据库:FAISS、Milvus、Weviate或Pinecone等工具用于高效处理密集向量搜索。
3. 稀疏检索技术:使用传统的关键字匹配和布尔运算符,根据精确的关键字匹配检索文档。

通过LangChain集成的BM25检索到的相关文档:
1. RAG框架:如LangChain等框架可以将这些组件整合到一个有凝聚力的RAG系统中。
2. 向量数据库:FAISS、Milvus、Weviate或Pinecone等工具用于高效处理密集向量搜索。
3. 稀疏检索技术:使用传统的关键字匹配和布尔运算符,根据精确的关键字匹配检索文档。

通过利用稀疏和密集检索技术,RAG系统中的混合搜索可以显著提高检索信息的质量和相关性,使其成为处理复杂信息检索任务的强大工具。

这种组合不仅提升了召回率和精确度,还确保了系统的鲁棒性和效率,从而有效应对各种类型的查询。实施混合搜索可以提升RAG系统的性能,使其在不断发展的信息检索环境中成为不可或缺的工具。


最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!

在这里插入图片描述

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

5. 大模型面试题

面试,不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

在这里插入图片描述
如有侵权,请联系删除。

  • 12
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值