三、设计智能体
创建智能体需要一种系统化的方法,将技术专业知识与对业务需求的清晰理解相结合。以下分步指南可帮助您有效地设计和实现智能体。
第1步:定义目标
第一步是明确智能体的目标。清楚地阐明智能体应该实现的目标非常重要。此步骤为智能体的功能和范围奠定了基础。以下步骤有助于确定智能体的目标:
-
确定使用案例
首先确定智能体将处理的特定任务或流程。这些范围从自动生成发票到管理客户查询。 -
设定明确的目标
定义可衡量的结果。例如:将客户支持中的人工干预减少 30%,或在 2 小时内生成准确率达到 100% 的账单。 -
了解限制
明确定义智能体不会
执行的任务,以避免范围蔓延。通过预先建立界限,开发可以保持重点,保持时间表,并且智能体可以实现其预期目的,而不会产生不必要的复杂性。
示例:人力资源入职虚拟助手的主要目标是通过自动化文档验证、培训计划和常见问题解答来减少管理开销。但是,此助手并非旨在处理复杂的法律文件审查或员工绩效管理。
第2步:映射数据和集成要求
智能体依靠数据来做出决策和采取行动。映射数据和集成环境可确保智能体能够访问正确的资源。执行以下任务有助于了解数据要求:
-
数据识别
确定您的智能体将访问的数据源,例如数据库、API、文档或用户输入。 -
集成策略
确定智能体将如何与这些源交互。这可能涉及 REST API、文件解析或中间件解决方案。 -
数据安全
确保所有集成都符合安全标准,以保护敏感和机密信息。 -
数据验证
实施机制以在处理数据之前检查数据完整性。
示例:生成财务报告的智能体从 ERP 系统检索数据,验证交易记录,并与税务计算 API 集成以生成准确的结果。引入控制措施以强制实施对敏感数据的受限访问,从而仅允许授权用户访问。此外,该智能体还包括内置的数据验证步骤,用于验证信息以检测和标记不一致或错误。
第3步:配置意图识别和任务管理
意图识别使智能体能够理解用户请求并做出相应的响应。这就是智能体的智慧开始闪耀的地方。
-
训练 NLP 模型
使用机器学习技术、预训练的模型或生成式人工智能(Generative AI,GenAI)模型,使智能体能够准确解释用户意图。 -
任务优先级
定义任务层次结构。确保高优先级任务在执行过程中具有更大的权重。 -
回退机制
设计智能体无法理解意图的场景的规则。例如,提示用户进行澄清或上报给人工操作员。 -
工作流自动化
开发智能体将根据识别出的意图执行的工作流。工作流应包括决策树、条件逻辑和任务依赖关系。
示例:调度智能体收到输入“预订下周与 John 的会议”。智能体使用预先训练的 NLP 模型解释计划的意图,准确识别任务和关键细节,如 “John” 和 “next week”。智能体通过检查是否与其他高优先级任务(例如预先安排的会议或截止日期)冲突来确定任务的优先级。如果在联系人数据库中找不到 John,智能体会要求用户提供说明。使用工作流自动化,智能体查询两个日历的可用性,并向用户确认最终会议详细信息。
第4步:合并上下文和记忆
上下文和记忆管理对于创建无缝的用户体验至关重要。具备强大记忆功能的智能体能够个性化交互并保持会话之间的连续性。有多种记忆和上下文管理方法可以实现此目的:
-
短期记忆
(short-term memory):存储特定于会话的信息,例如最近的查询或正在进行的任务。
-
长期记忆
(long-term memory):保留用户偏好、历史交互和重复模式,以增强个性化。
-
上下文感知
(context awareness):利用记忆提供考虑用户当前情况和过去交互的响应。
-
数据隐私
(data privacy):实施防护机制以确保敏感用户数据得到安全存储和访问。
确定智能体所需的功能并相应地实施这些功能非常重要。
示例:电子商务聊天机器人会记住客户的首选付款方式,并在结账过程中自动建议该付款方式。智能体使用短期记忆来回忆当前会话期间添加到购物车中的商品,并使用长期记忆来识别重复的购买模式并建议相关的促销或忠诚度折扣。情境感知(Context Awareness)确保它可以从回答产品查询无缝过渡到完成购买。智能体会加密敏感的付款详细信息,并且仅存储匿名交互数据以进行个性化。
注5:情境感知是指智能体能够理解用户当前的情况和过去的交互,并据此提供相应的响应。
四、建立通信协议
智能体与用户、其他应用程序和其他专用智能体交互以执行任务。这些实体之间的通信必须稳健才能实现最佳结果。在为智能体构建通信方法时,请务必考虑以下事项:
-
用户通信
使用根据用户的理解水平量身定制的清晰、简洁的回答。智能体可以通过分析用户输入(例如词汇复杂性或响应模式)并相应地调整其语言来评估这一点。例如,技术用户可能会收到更详细的解释,而经验不足的用户可能会获得简化的指导。
-
智能体间通信
为智能体定义 API 或消息传递标准,以共享数据和有效协作。消息传递标准定义了数据的结构,以及用于支持信息通信和理解的其他元数据。
-
错误处理
向用户提供有意义的错误消息,并在出现问题时建议后续步骤。
-
多语言支持
如有必要,请允许智能体以多种语言进行通信。
示例:客户支持智能体使用 NLP 来评估用户对技术术语的熟悉程度。对于新用户,它会以通俗易懂的语言解释账单差异,例如:“您上次付款少了 50 美元,这就是有未结余额的原因。” 对于更高级的用户,智能体会提供其他技术详细信息和指向相关常见问题解答的链接。
智能体间通信使支持智能体能够从计费系统获取交易数据,并与通知智能体协调发送后续电子邮件。如果系统遇到不完整的数据,智能体会显示一条错误消息,例如:“我们缺少您的账单 ID。请提供它以继续。”
五、测试、部署和优化
测试对于确保智能体在实际场景中可靠执行至关重要。根据测试智能体的要求,考虑以下测试方法非常重要:
-
模拟测试
创建测试用例以模拟实际用户交互并验证智能体的行为。
-
监控和反馈
使用分析工具跟踪智能体的性能,以识别瓶颈、执行问题和需要改进的领域。
-
迭代改进
定期更新智能体以提高准确性、扩展功能并解决新出现的问题。
示例:在部署到实时客户交互之前,客户服务助理会接受响应准确性、升级工作流程和响应时间测试。模拟测试用于模拟某些用户输入和场景,以测试智能体的行为方式。监控和反馈用于跟踪助手的性能指标、用户满意度分数和错误率。
如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】