大模型应用开发 | 国产开源的Graph RAG chatwiki,可以打造微信里的聊天机器人

Frame 346527249.png

ChatWiki是一款国产开源的知识库 AI 问答系统。系统基于大语言模型(LLM )和检索增强生成(RAG)和GraphRAG知识图谱构建,提供开箱即用的数据处理、模型调用等能力。

一、企业私有知识库

企业知识场景全覆盖,比如教育、金融、法律、医疗健康、政务部门等行业上传企业私有文档,由ChatWiki负责对文档进行分段清洗,由DeepSeek等AI大模型负责根据知识库已有内容快速给出精准回答。

目前支持DeepSeek R1、doubao pro、qwen max、Openai、Claude 等全球20多种主流模型。

比如单独问DeepSeek“xx乡村规划许可证怎么办理?”,DeepSeek回答可能会有会有“幻觉”风险,而通过在ChatWiki学习特定领域的知识,就能给出准确的答案。

图片

二、支持接入DeepSeek

ChatWiki支持接入**DeepSeek R1、DeepSeek V3、**doubao pro、qwen max、Openai、Claude 等全球20多种主流模型。只需要简单的配置API Key,即可接入DeepSeek。

图片

三、支持接入微信生态

  • 通过API接口可无缝接入公众号、微信客服,打造专属人工AI智能助聊天机器人;
  • 还支持嵌入网站、桌面客户端、WebApp、微信小程序、抖音企业号、快手号、视频号及API调用等,全面覆盖企业多终端业务场景需求。
  • 支持实时查看用户与AI机器人的对话内容;
  • 人机协同,支持关键词转人工客服。

图片
ChatWiki接入微信客服演示

四、GraphRAG知识图谱构建

ChatWiki在向量检索、全文检索、混合检索的基础上,支持知识图谱检索

与传统的RAG系统相比,GraphRAG能够更有效地处理复杂的查询, 提供更准确和相关的回答,特别适用于涉及大量实体和关系的数据集。

简单来说,GraphRAG = 知识图谱 + 检索增强生成RAG。

图片

五、更多功能特点

①可设置对外文档

支持将知识库内容快速发布为可公开访问的文档站点,提供SEO优化、多访问统计等功能,轻松打造品牌化客户支持门户。

②多种格式文档导入

支持导入OFD、Word、Excel、PPT、PDF、markdown等多种格式的文档。

③支持搭建AI工作流

在ChatWiki里可以通过拖拽节点迅速搭建工作流。比如自由选择AI对话、问题分类、知识库、Http请求、判断分支等多种原子能力,通过可视化拖拉拽的方式编排组合,快速搭建出业务流程。

④与第三方业务数据打通

可无缝嵌入业务系统,实时整合第三方数据源(如销售、库存、物流数据),打破数据孤岛,显著缩短人工处理时间。

⑤权限分级设置支持

提供企业级多级权限控制,支持角色分配(管理员/编辑员/只读成员),满足敏感数据管控与团队协作需求。

⑥大模型语义分段

RAG分段决定了AI回答的准确性,十分重要,ChatWiki不仅支持普通分段,还支持大模型语义分段,通过语句向量相似度进行分段,防止段间关键语义信息的丢失。

⑦支持下载桌面端

本地部署版本支持桌面客户端,下载即用。

Frame 346527157@3x.png

六、6大独特优势

图片

七、支持多种部署

ChatWiki支持多种部署方式:

  • docker部署;
  • 离线docker部署;
  • 免docker部署,完全本地部署,源码安装。

docker部署安装流程如下:

(1)安装docker(已经安装的跳过此步骤)

sudo curl -sSL https://get.docker.com/ | CHANNEL=stable sh

(2)克隆或下载chatwiki项目代码

git clone https://github.com/zhimaAi/chatwiki.git

(3)按需要修改docker环境变量(非必须)

vim ./chatwiki/docker/.env

(4)按需要修改项目配置参数(非必须)

vim ./chatwiki/configs/chatwiki/config_pro.ini

(5)使用Docker Compose构建并启动项目

cd chatwiki/docker

docker compose up -d

(6)使用负载均衡或nginx配置域名指向对应的服务(非必须)

(7)通过ip+端口访问(需要开放指定的端口${CHAT_SERVICE_PORT},默认18080)或者域名访问管理后台

八、ChatWiki开源地址

github地址:
https://github.com/zhimaAi/chatwiki

github地址.jpg


九、如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。

在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

适用人群对大模型领域有浓厚兴趣,技术应用于实际工作中,希望在AI转型浪潮中拓宽职业道路,有所创新和突破的个人课程概述【背景介绍】大模型LLM对话系统课程专为感兴趣的学员设计,旨在通过系统化的教学,使学员掌握构建和部署基于大型语言模型(LLM)的对话系统的技能。本课程结合了理论与实践,通过丰富的案例,帮助学员深入理解LLM对话系统的核心原理与前沿技术。【师资情况】本课程课件,案例由一群经验丰富的AI专家研究而得。他们不仅拥有深厚的理论知识,更具备丰富的项目实战经验。讲师团队将结合最新的行业趋势和技术发展,为学员提供前沿、实用的教学内容。课程特色基础到进阶:从LLM基础概念讲起,逐步深入到对话系统的架构、算法、模型训练与优化等关键环节,确保学员能够扎实掌握每一步。实战导向:通过大量实际案例,如ChatWiki系统的应用与部署,让学员在动手实践中巩固所学知识,提升实战能力。前沿技术:介绍最新的LLM技术和研究动态,如检索增强生成(RAG)技术,使学员紧跟技术前沿。服务方式在线学习平台:提供全面的在线学习资源,包括视频课程、讲义、代码示例等。项目实践:提供实际项目机会,让学员在真实场景中应用所学知识,提升实战能力。帮助学员从基础开始,逐步成长为具备实战能力的AI开发者。欢迎对LLM对话系统感兴趣的零基础学员加入我们的课程!
### 关于Graph RAG开源应用程序或项目 对于Graph RAG(检索增强生成)的研究和应用,多个开源项目提供了丰富的资源和支持。以下是几个值得关注的开源项目: #### 1. GRAG: Graph Retrieval-Augmented Generation 该项目由Hu Yuntong等人开发,在研究论文《GRAG: Graph Retrieval-Augmented Generation》中详细介绍[^3]。此项目旨在利用图结构来增强文本生成过程中的信息检索能力。通过引入图谱作为外部知识源,能够更好地捕捉复杂的关系网络,提高生成内容的质量。 ```python import grag # 初始化模型实例 model = grag.Model() # 加载预训练权重 model.load_weights('path/to/pretrained/model') # 使用模型进行推理 output = model.infer(input_data) ``` #### 2. LightRAG LightRAG是一个创新性的框架,它不仅融合了图结构到传统的文本索引和检索机制中,还设计了一套高效的双层检索体系架构,以实现更加精准的信息获取[^4]。此外,为了适应动态变化的数据环境,LightRAG实现了增量更新算法,确保系统始终处于最新状态。目前,这个项目已经在GitHub上公开发布,供研究人员和技术爱好者探索其潜力。 ```bash git clone https://github.com/path-to-repo/LightRAG.git cd LightRAG pip install -r requirements.txt python setup.py develop ``` #### 3. RAG Survey Repository 除了具体的实施案例外,还有专门针对RAG技术领域整理而成的知识库——RAG Survey Repository。这收集了大量的文献资料、工具链以及最佳实践指南,帮助开发者深入了解Graph RAG背后的技术原理和发展趋势[^2]。 ```bash git clone https://github.com/Tongji-KGLLM/RAG-Survey.git explorer .\RAG-Survey\ ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值