可以封神了!这个国产开源的Graph RAG chatwiki,可以打造微信里的聊天机器人

Frame 346527249.png

**ChatWiki是一款国产开源的知识库 AI 问答系统。 系统基于大语言模型(LLM )和检索增强生成(RAG)和GraphRAG知识图谱构建,提供开箱即用的数据处理、模型调用等能力。

*一、企业私有知识库*

企业知识场景全覆盖,比如教育、金融、法律、医疗健康、政务部门等行业上传企业私有文档,由ChatWiki负责对文档进行分段清洗,由DeepSeek等AI大模型负责根据知识库已有内容快速给出精准回答。

目前支持DeepSeek R1、doubao pro、qwen max、Openai、Claude 等全球20多种主流模型。

比如单独问DeepSeek“xx乡村规划许可证怎么办理?”,DeepSeek回答可能会有会有“幻觉”风险,而通过在ChatWiki学习特定领域的知识,就能给出准确的答案。

图片

二、支持接入DeepSeek
ChatWiki支持接入DeepSeek R1、DeepSeek V3、 doubao pro、qwen max、Openai、Claude 等全球20多种主流模型。只需要简单的配置API Key,即可接入DeepSeek。

**三、支持接入微信生态*

  • 通过API接口可**无缝接入公众号、微信客服,**打造专属人工AI智能助聊天机器人;
  • 还支持嵌入网站、桌面客户端、WebApp、微信小程序、抖音企业号、快手号、视频号及API调用等,全面覆盖企业多终端业务场景需求。
  • 支持实时查看用户与AI机器人的对话内容;
  • 人机协同,支持关键词转人工客服。

*ChatWiki接入微信客服演示*

四、GraphRAG知识图谱构建

ChatWiki在向量检索、全文检索、混合检索的基础上,支持知识图谱检索

与传统的RAG系统相比,**GraphRAG能够更有效地处理复杂的查询,**提供更准确和相关的回答,特别适用于涉及大量实体和关系的数据集。

简单来说,GraphRAG = 知识图谱 + 检索增强生成RAG。

*五、更多功能特点*

①可设置对外文档

支持将知识库内容快速发布为可公开访问的文档站点,提供SEO优化、多访问统计等功能,轻松打造品牌化客户支持门户。

②多种格式文档导入

支持导入OFD、Word、Excel、PPT、PDF、markdown等多种格式的文档。

③支持搭建AI工作流

在ChatWiki里可以通过拖拽节点迅速搭建工作流。比如自由选择AI对话、问题分类、知识库、Http请求、判断分支等多种原子能力,通过可视化拖拉拽的方式编排组合,快速搭建出业务流程。

***④*与第三方业务数据打通

可无缝嵌入业务系统,实时整合第三方数据源(如销售、库存、物流数据),打破数据孤岛,显著缩短人工处理时间。

**⑤***权限分级设置支持*

提供企业级多级权限控制,支持角色分配(管理员/编辑员/只读成员),满足敏感数据管控与团队协作需求。

⑥大模型语义分段

RAG分段决定了AI回答的准确性,十分重要,ChatWiki不仅支持普通分段,还支持大模型语义分段,通过语句向量相似度进行分段,防止段间关键语义信息的丢失。

⑦支持下载桌面端

本地部署版本支持桌面客户端,下载即用。

**六、**6大独特优势

*七、支持多种部署*

ChatWiki支持多种部署方式:

  • docker部署;
  • 离线docker部署;
  • 免docker部署,完全本地部署,源码安装。

docker部署安装流程如下:

(1)安装docker(已经安装的跳过此步骤)

sudo curl -sSL https://get.docker.com/ | CHANNEL=stable sh

(2)克隆或下载chatwiki项目代码

git clone https://github.com/zhimaAi/chatwiki.git

(3)按需要修改docker环境变量(非必须)

vim ./chatwiki/docker/.env

(4)按需要修改项目配置参数(非必须)

vim ./chatwiki/configs/chatwiki/config_pro.ini

(5)使用Docker Compose构建并启动项目

cd chatwiki/docker

docker compose up -d

(6)使用负载均衡或nginx配置域名指向对应的服务(非必须)

(7)通过ip+端口访问(需要开放指定的端口${CHAT_SERVICE_PORT},默认18080)或者域名访问管理后台

*八、ChatWiki开源地址*

github地址:

https://github.com/zhimaAi/chatwiki

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
适用人群对大模型领域有浓厚兴趣,技术应用于实际工作中,希望在AI转型浪潮中拓宽职业道路,有所创新和突破的个人课程概述【背景介绍】大模型LLM对话系统课程专为感兴趣的学员设计,旨在通过系统化的教学,使学员掌握构建和部署基于大型语言模型(LLM)的对话系统的技能。本课程结合了理论与实践,通过丰富的案例,帮助学员深入理解LLM对话系统的核心原理与前沿技术。【师资情况】本课程课件,案例由一群经验丰富的AI专家研究而得。他们不仅拥有深厚的理论知识,更具备丰富的项目实战经验。讲师团队将结合最新的行业趋势和技术发展,为学员提供前沿、实用的教学内容。课程特色基础到进阶:从LLM基础概念讲起,逐步深入到对话系统的架构、算法、模型训练与优化等关键环节,确保学员能够扎实掌握每一步。实战导向:通过大量实际案例,如ChatWiki系统的应用与部署,让学员在动手实践中巩固所学知识,提升实战能力。前沿技术:介绍最新的LLM技术和研究动态,如检索增强生成(RAG)技术,使学员紧跟技术前沿。服务方式在线学习平台:提供全面的在线学习资源,包括视频课程、讲义、代码示例等。项目实践:提供实际项目机会,让学员在真实场景中应用所学知识,提升实战能力。帮助学员从基础开始,逐步成长为具备实战能力的AI开发者。欢迎对LLM对话系统感兴趣的零基础学员加入我们的课程!
### 关于Graph RAG开源应用程序或项目 对于Graph RAG(检索增强生成)的研究和应用,多个开源项目提供了丰富的资源和支持。以下是几个值得关注的开源项目: #### 1. GRAG: Graph Retrieval-Augmented Generation 该项目由Hu Yuntong等人开发,在研究论文《GRAG: Graph Retrieval-Augmented Generation》中详细介绍[^3]。此项目旨在利用图结构来增强文本生成过程中的信息检索能力。通过引入图谱作为外部知识源,能够更好地捕捉复杂的关系网络,提高生成内容的质量。 ```python import grag # 初始化模型实例 model = grag.Model() # 加载预训练权重 model.load_weights('path/to/pretrained/model') # 使用模型进行推理 output = model.infer(input_data) ``` #### 2. LightRAG LightRAG是一个创新性的框架,它不仅融合了图结构到传统的文本索引和检索机制中,还设计了一套高效的双层检索体系架构,以实现更加精准的信息获取[^4]。此外,为了适应动态变化的数据环境,LightRAG实现了增量更新算法,确保系统始终处于最新状态。目前,这个项目已经在GitHub上公开发布,供研究人员和技术爱好者探索其潜力。 ```bash git clone https://github.com/path-to-repo/LightRAG.git cd LightRAG pip install -r requirements.txt python setup.py develop ``` #### 3. RAG Survey Repository 除了具体的实施案例外,还有专门针对RAG技术领域整理而成的知识库——RAG Survey Repository。这收集了大量的文献资料、工具链以及最佳实践指南,帮助开发者深入了解Graph RAG背后的技术原理和发展趋势[^2]。 ```bash git clone https://github.com/Tongji-KGLLM/RAG-Survey.git explorer .\RAG-Survey\ ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值