在信息爆炸的时代,拥有一个专属的 AI 知识库,能让你在知识的海洋中快速精准地获取所需,大大提升工作和学习效率。
今天就为大家带来一个超级简单的方法,仅需 2 分钟,零代码基础,利用 ChatWiki 轻松搭建专属 AI 知识库。
1、认识ChatWiki
系统基于大语言模型(LLM )和检索增强生成(RAG)技术构建,提供开箱即用的数据处理、模型调用等能力,可以帮助企业快速搭建自己的知识库 AI 问答系统。
ChatWiki有云端SaaS版本,也支持企业在Github上下载源代码,进行本地部署,确保信息安全。
2、ChatWiki特点
免费开源: 整个项目完全开源,允许任何个人或组织机构下载源码后,直接部署使用或者进行二次开发发布;
开箱即用: 提供了完整的前后端套件支持,下载源码后只需要简单部署即可正常使用;
数据安全: 支持企业进行本地化部署,可离线使用;兼容多种模型,可以接入国内外20多种大模型;
如OpenAI、Azure OpenAI、Gemini、文心一言、通义千问、讯飞星火、月之暗面Kimi等模型,只需要简单配置模型API key等信息即可成功接入模型;
多种使用场景: 可在在线网站、H5链接、微信小程序、微信公众号、微信客服、视频号小店等场景配置使用;
3、ChatWiki2 分钟搭建流程
3.1、 注册 ChatWiki
打开浏览器
访问 ChatWiki 官网:https://chatwiki.com/
使用邮箱进行注册,按照系统提示填写相关信息;
3.2、 添加大模型
登录 ChatWiki 账号后,进入系统设置界面。
系统支持全球 20 多种主流模型,你可以根据自己的喜好和需求选择模型。
以使用 DeepSeek 大模型为例,首先需要前往 DeepSeek 官网获取 API Key,获取到 API Key 后按照提示准确填写 API Key 等相关信息,即可快速完成大模型的添加。
3.3、创建知识库
在 ChatWiki 的操作界面中,点击 “知识库管理” ,选择 “新增知识库”,系统会弹出文件上传窗口,你可以将想要纳入知识库的文档信息上传。
系统支持多格式数据批量导入,比如 PDF、DOCX、TXT、 XLSX、HTML等。
除此之外,还可以自动对导入的文本数据进行预处理、向量化或 QA 分割,将文本数据转化为模型能够理解和处理的向量形式,为后续的检索和生成做好准备。
3.4、创建机器人
完成知识库创建后,点击 “机器人管理”,在机器人管理页面中,选择 “新增机器人”;
还可以对机器人进行精细化设置,如设置系统提示词,包括欢迎语;
让用户在与机器人交互时能感受到友好的氛围;设置未知问题提示语,当机器人无法回答用户问题时,给用户一个合理的引导。
3.5、配置使用场景
机器人设置完成后,在 “机器人管理 - 对外服务” 中,根据指引;
可在在线网站、H5链接、微信小程序、微信公众号、微信客服、视频号小店等场景配置使用。
有用户咨询时,消息都有AI机器人进行接待回答。
拥有专属 AI 知识库后,你在查询知识时无需再在海量网络信息中筛选,直接在库内就能精准定位,节省大量时间。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。