绝对式编码器编码方式整理
一、概述
绝对式角位移传感器可以对整个圆周任意位置的角度进行直接读取,由于每个位置都有唯一性并且相互独立,在数据的测量过程中不会因为前面的测量误差对后续的测量结果带来影响。目前,对于绝对式编码,现在主要可以将其分成四大类:二进制编码方式、游标编码方式、图像编码方式以及角位移编码方式。其中,二进制编码方式以及游标编码方式是目前最为主要流行的编码方式。
在这里,将主要对二进制编码的编码方式加以详细说明,包括其发展历程、编码类别、码道产生原理、电子细分技术、优缺点、校验方法等,并且主要目标对象是优越性较强的单码道编码以及准绝对式编码(双码道编码)。对于游标编码方式,也以一个例子给出其较为主流的编码原理介绍。而对于图像编码方式以及角位移编码方式,由于已经脱离了一般编码,仅简要说明其特点。
二、二进制编码的基本进程
1.基本情况:
(1)绝对位置编码的发展过程是以唯一性和单变性为基础特性,以单码道性为最终目标进行编码矩阵列数的缩减。
目前,编码类型的发展经历了 n 条码道的反射式格雷码、n/3条码道矩阵码、2 条码道的 m 序列码以及 1 条码道的单码道格雷码。
(2)发展方向:由于单码道格雷编码理论尚不完善,仍依赖搜索获得编码,因此其快速构造方法是未来绝对位置编码理论的发展方向。
2.反射式格雷码
2.1应用范围:
目前工业上使用最多的绝对式编码方法
2.2优点:
具有唯一性和单变性,编码可靠
2.3缺点:
n 位分辨率码盘需要 n 条码道,分辨率越高,码道数目越多,编码器径向尺寸越大,使得高分辨率和小型化产生冲突。
2.4产生原理:
反射式格雷码是一种无权二进制码,码字没有重复,满足唯一性,相邻码字仅有一位发生变化,满足单变性。
图1 反射式格雷码产生方式
通过对n位字长格雷码反射一次可以将码字的数目提高一位,再将上半部分的最高 0,下半部分补 1,即可获得同时具有唯一性和单变性的n+1位格雷码。反射补位的构造方法使格雷码具有特殊规律,每一位编码都具有序列d=0110 的形式,区别在于0 和 1 的长度随着位权的增加而增长。
3.矩阵码
3.1基本来源:
矩阵码是传统反射式格雷码的一种变形,可用于绝对位置检测。矩阵码将传统格雷码不同位权的编码刻画在一圈码道上,再利用逻辑算法实现合适的光敏探头的选择,其最终的输出与传统格雷码相同。
3.2优点:
相对传统反射式格雷码,码道数目大大减少。
3.3缺点:
需要使用复杂的矩阵逻辑译码电路和额外的光敏探头才能完成适当的选通。
3.4示例:
8位字长矩阵码盘。(码道数目缩减为 3 条,采用传统反射式编码为8条)
图2 8位字长矩阵码盘示意图
图3 8位字长反射式格雷码的输出
3.5总结:
使用矩阵码对2n个绝对位置进行编码,可将码道数目约缩减为n/3条,将大大减小编码器径向尺寸。
4.伪随机序列:m序列码
4.1基本概念:
最常用的伪随机序列之一是m序列,由于其容易产生、规律性强,而且具有许多优良的性能,因此是最早得到广泛应用的,同时如序列等很多伪随机序列都是由序列衍生而来的。其以二进制的反馈移位寄存器序列用于绝对位置编码
4.2二进制的反馈移位寄存器序列:
通常被称为线性反馈移位寄存器序列,是一种利用移位寄存器和反馈逻辑生成伪随机序列的技术。可由K阶本原多项式生成。
4.2.1LFSR简介:
1.LFSR是一种移位寄存器,其中每次移位时的输入位是寄存器中某些位的线性组合(通常是异或操作)
2.寄存器的长度为n位,这意味着LFSR序列的周期最长可达2n-1
3. LFSR 的输出是一种 伪随机序列
4.2.2工作原理:
1.反馈移位:LFSR 中每个寄存器在每个时钟周期将其内容向右移动一位,最左边的输入位由寄存器的某些位的异或结果得到。
2.反馈多项式:寄存器位的选择由一个称为反馈多项式的多项式来决定,这个多项式定义了寄存器中哪些位需要进行异或操作。
例如,反馈多项式为x4+x3+1表示一个 4位 LFSR,其中 第4位和第3位的值进行异或,然后输入到最左位。
4.2.3例子:
假设我们有一个 4位 LFSR,反馈多项式为x4+x3+1:
- 初始状态:假设初始寄存器状态为1000
- 反馈计算:根据多项式,计算寄存器 第4位和第3位的异或,得到反馈位
- 移位:
当前寄存器状态为 1000;
计算反馈位:1 ⊕ 0 = 1;
进行移位,结果为:1100。
- 继续移位:
当前寄存器状态为 1100;
计算反馈位:1 ⊕ 1 = 0;
移位后结果为:0110
通过不断移位,LFSR 会生成一个长度为24-1的序列,这个序列是伪随机的,并且具有很长的周期性。
4.2.4LFSR 序列的性质:
1. 最大长度序列(m序列):如果选择的反馈多项式是本原多项式,LFSR 生成的序列将具有最大长度,为2n-1,其中n是寄存器的位数。
2. 伪随机性:LFSR生成的序列在统计特性上表现为随机序列。例如,序列中0和1出现的次数大致相同,适用于伪随机数生成。
3.周期性:LFSR 序列的长度和反馈多项式的选择有关,如果选择不当,序列的周期可能会小于2n-1.
4.3m序列绝对编码
反馈移位寄存器系统都服从一个反馈逻辑函数 xn= f ( x0,x1,⋯,xn- 1),当给定初始的 n个状态 ( x0,x1,⋯,xn- 1) 后,通过逻辑函数 f 即可得到第 n + 1 个状态 xn。通过一个线性反馈移位寄存器系统的不断移位可以得到一个无限长二进制序列,其周期为 P。全部P个状态具有唯一性。其中,P=2n-1。
由于n 位为全“0”的状态无法使用,在实际编码时,可以将全“0”的码字加入一个 n 位字长 m 序列的适当位置以实现 2n个饱和位置的编码。
4.4缺点:
不具有单变性,大大降低了编码的可靠性。相邻码字存在多位变化,由于加工安装的偏差以及器件的不同步必然会导致误码的出现。
4.5容错机制:
为避免误码造成的粗大误差,应用m序列设计绝对式旋转编码器时,必须添加一圈同步码道,在脉冲圆盘上平行地制作与M系列码相同脉冲数的增量图形,再把绝对值部分的检出器的间隔变成1/2节距。因此,使用 m 序列对绝对位置进行编码,需要的码道数目为 2。
4.6示例:
4.6.1整体介绍:
图4为一个 4 位字长m 序列绝对式单码道格雷码的码盘及探头分布示意图,外圈的光栅为同步码道,内圈为m序列编码。
图4 4位字长m序列码盘及探头分布示意图
由于在初始的n-1个位置无法获得角度信息,可使用阵列式电荷耦合器件(CCD)代替紧密排列的探头进行信号读取。
5. 单码道格雷码
5.1单码道格雷码的定义
单码道格雷码的单码道性来源于其码字矩阵的各列移位等价,因此n 条图案相同码道可以缩减为1 条码道,仍保持了普通格雷码的唯一性和单变性。
5.2发展现状
单码道的分类如图5。目前,定义了d⁃股项链式单码道格雷码,实现了目前全部单码
图5 单码道格雷码分类
道格雷码的统一,按照股数d 的不同分为 3 类:当 d = 1 时,为传统的项链式单码道格雷码;当 d = n 时,为传统的自互反项链式单码道格雷码;当 1< d < n 时,为新发现的
编码类型,称为多股项链式单码道格雷码。其中,d为n的任意整数因子,n为编码字长位数,且这3类编码之间可以实现相互转换。
5.3实例
一个 5 位字长 30 个位置的单码道格雷码的码字表示为
每一位编码与相邻位之间均移位等价,仅需要循环移动 3 个位置 2 位编码就会重叠。
应用具有单变性的编码设计码盘,码盘上只需刻画一条码道,n个光敏探头按照各个位循环移位的数目排列即可复现 n 位码字矩阵实现绝对位置的检测。图 8 为使用上述例子设计的码盘图案及光敏探头分布示意图。
图6 5位字长30个位置单码道格雷码码盘图案及探头分布示意图
5.4缺陷
n 位字长位置数为 P = 2n的饱和单码道格雷码不存在。
6.基于卡诺图的均布式绝对位置编码
6.1特点:
新型均布式绝对位置编码的码盘只有一条码道构成,与编码位数相对应的光电传感器均匀布置读取编码盘的位置编码,对工艺要求不高,而且非常利于编码的小型化。
均布式绝对位置编码的相邻位置读数所对应的编码与格雷码类似只会出现一位编码的读数不同,而不会同时出现位编码的跳跃,不会出粗大误差;并且码盘上只会刻有一条码道。
6.2原理:
均布式绝对位置编码可以说是从格雷码中演化而来,若将 n 位格雷码的 n 个光电传感器沿周向均匀布置,而非沿径向布置,且只用一条码道编码,这样就可以大大减小码盘以及整个编码器的体积。但是如何对这一码道进行编码,使得编码器每转过一个固定角度,均匀布置的 n 位光电传感器会得到 n 位唯一的编码。可以由数理统计规律和卡诺图查表的方法得到。
6.3示例:5 位均布式绝对位置编码为例来具体讲解均布式绝对位置编码的设计
6.3.1编码
(1)将编码盘按照圆周方向均匀地分为 5 等分,每一等分对应的角度为360/5 =72°,分别记为基区、第二区、第三区、第四区以及第五区,然后按照排列组合的方法先确定基区的绝对位置编码的读数,然后利用卡诺图查表,得到5位均布式绝对位置编码(或者可用格雷码转换得到)。
(2)设在基区的编码读数为,那么当转过360/5=72°时就到达第二区,此时读数为2;当再转过360/5=72°时到达第三区,此时读数为;依此类推,当码盘转过一周时,可以得到 5 组读数,对应圆周上相差72°角度的值,必须保证这5组读数的不同。
(3)根据 5 位编码中1 所占的个数且 5 位编码必须满足移位不相等的性质,计算得到基区可以设计的码数为:
即基区最高可以设计 6 种码数,使得在码盘转过一周后得到的6×5 =30种 5 位编码各不相同,符合设计要求。
6.3.2译码
现在以这样的规律一次得到30个5位的二进制码表:
表1 5位均布式绝对位置编码表
通过译码,将10100译成0,11100译成1,11110译成2,11010译成3,……, 那么所得到的码值就对应了编码器转过的角度位置信息,从而可以实现对码盘旋转角度的测量。
6.3.3容错特点:
均布式绝对位置编码所代表的数无论加1或者减1,对应的循环码只有一位变化。如果在编码盘中采用均布式绝对位置编码来代替二进制码,即使编码盘停在任何2个均布式绝对位置编码之间的位置,所产生的误差也不会大于最低位所代表的量。
例如,当编码盘停在10001和10000之间时,由于这2个均布式绝对位置编码中有4位相同,只有1位不同。因此,无论停的位置如何有偏差,产生的均布式绝对位置编码只有1位可能不一样,即可能是位置编码10001和10000,而它们分别对应绝对位置10和11。因此,即使有误差,也不过是12°,提高了编码器的精度。
6.3.4缺点
任意字长的绝对位置编码不能取到所有该字长的位置数。对于字长为质数的均布式绝对位置编码,能取到除了读数为全0和全1的所有位置数;字长为合数,取到的位置数可以根据字长位数本身,通过数理统计的方法计算出来。
7、一种新型的单码道绝对编码和解码方法
7.1编码原理
单码道绝对编码满足“惟一性”,即连续任取N位或大于N位的编码序列Ni,则该序列在码道内是唯一的。N位连续的编码序列称为“最小区位码”,Ni对应光栅上惟一的位移或角度值。圆光栅编码还满足“闭合性”,即以任意N位编码序列N0为起始,在圆光栅码道内按位顺序选取 N1、N2、……、Nn,均满足惟一性,其中n为码道内编码的位数。根据上述编码条件,将码道内的n位编码分为数量相等并且相间排列的标识码和位置码,标识码由X位编码构成,位置码由Y位编码构成,即n= z (X +Y),其中X≥1,Y≥1,z≥2。要求构成标识码的编码位中至少有一位不同于构成位置码的任一编码位; 所有标识码均相同,最简单、编码数量最少的标识码可以为不同于位置码的任意一个编码位; 位置码中的每个编码均可表示为一个二进制位(0或1)。设相邻的一个标识码和一个位置码依次构成一个一级码区,相邻的两个一级码区依次构成一个二级码区,且两相邻一级码区和两相邻二级码区依次排列,均无重合的编码位。各二级码区内第二个一级码区的位置码由该二级码区内第一个一级码区位置码的二进制序列按位取反所得,则所有二级码区内各种编码位的数量分别相等,因此光栅上的各个二级码区所占的位移或角度也相等。按此编码方法,码道内一级码区的数量为2m,二级码区的数量2m/2,其中m为构成位置码的二进制位数,码道内共有(X+Y)×2m位编码。
7.2编码举例
以最简单的单个编码位 “2”表示标识码,用 “0”和“1”构成的 4 位二进制序列表示位置码,即X=1,Y=4,二级码区及其编码序列如表1所示。
表2 编码举例
将表 1 所示各一级码区的编码序列依次首位相接,便构成了一个完整的绝对编码序列。该编码具有以下特点:
1) 码道内连续任取 5 位(X=1,Y=4,m=4)编码序列,均满足“惟一性”。
2) 编码在圆光栅上满足“闭合性”,即以任意5位编码序列N0为起始,在圆光栅码道内按位顺序选取N1、N2、……、Nn,均满足惟一性,其中n=(X +Y)×2m=80。
3 )编码由2m/2=8个二级码区组成,二级码区可将光栅码道划分为8等份,便于光栅刻画,并且有效避免了累积误差的产生,同时也有利于提高解码精度。
7.3编码实现
加工单码道绝对编码光栅时,可通过刻画相间排列、宽度不同的黑白条纹来表示编码位。设相邻的一个黑条纹和一个白条纹依次构成一个编码位,则区分编码位有以下三种方法:
1) 构成编码位的所有白条纹均相同,则黑条纹的不同宽度可以区分不同的编码位。
2) 构成编码位的所有黑条纹均相同,则白条纹的不同宽度可以区分不同的编码位。
3) 利用相邻黑白条纹宽度比例关系的不同区分编码位。
采 用 1) 的 编 码 位 区 分 方法,并 且 每 个 编 码 位由黑 条 纹 在 前、白 条
纹 在 后 的 顺 序 构 成,则每个编码位 的 起 始位置为前一个编码位白条纹与该编码位的黑条纹交界处。直线型绝对编码光栅刻画如图 1 所示,圆型绝对编码光栅刻画如图 2 所示。图 1 和图 2 中,1 为黑条纹,2 为白条纹,10 为表示标识码的一个编码位,20 为表示位置码的编码位,30 为一个一级码区,40 为一个二级码区。
图7 直线型绝对编码光栅示意图
图8 圆形绝对编码光栅示意图
7.3.1解码方法
1.粗值表
以圆光栅的绝对编码序列为例,若码道内各编码位分别对应的条纹宽度比例确定,则各编码位在圆周内所占的角度值即可确定,根据各编码位的数量及比例关系,可以计算出各编码位在圆周内所占的角度值。
例如,上述编码有三种编码位 “2”、“0”、“1”,其中标识码 “2”的数量为 16,构成位置码的两种编码位“0”和“1”数量同为32,设它们对应的条纹宽度比例为A:B:C,则有
Pk(16A+32B +32C)=360°
其中Pk为角度因数,即
Pk=360°/(16A+32B+32C)
则三种编码位在圆周内所占的角度值P2、P0和P1分别为
P2=Pk×A
P0=Pk×B
P1=Pk×C(3)
根据编码的“惟一性”,即码道内任取5位连续的编码序列Ni(i= 0,1,2,…,79),该序列在整个码道内是惟一的,则包含80个编码位的圆光栅码道内可形成80个绝对角度值PHi( i=0,1,2,…,79),每个绝对角度值可由一个5位的连续编码Ni惟一表示。
设上述编码序列中N0为“20000”,表示圆光栅码道上的绝对零位,即
PH0=0
下一个编码序列N为N0右移一个编码位形成,为“00002”。N0到N1经过的角度为一个编码位“2”所占的角度值P2,则N1对应的绝对角度值为
PH1=P2
同样,第三个编码序列N2为N1右移一个编码位形成,为“00021”。N1到N2经过的角度为一个编码位“0”所占的角度值P0,则N2对应的绝对角度值为
PH2=P2+P0
以此类推,即可得到一个如表2所示的绝对角度粗值表。
表3 粗值表
2细分
采用线阵CCD传感器进行信号采集。CCD传感器由高感光度的半导体材料制成,能把不同强度的光转变成不同数量的电荷,经模数转换器转换成数字信号输出。CCD传感器可以还原光栅上黑白条纹的影像,利用此数据影像不但可以确定编码序列、制定粗值表,还可进行细分计算。由CCD传感器采集数据还原的光栅条纹影像如图3所示。
图9 细分原理图
当CCD像元位于透光区域(1)时,输出高电压值VH,当CCD像元位于不透光区域(3)时,输出底电压值VL,而当CCD像元处于黑白条纹交接位置(2)时,输出电压介于高低电压值之间VM。利用VH和VL可确定粗值起始位置和参考线位置,而利用VM、VH和VL可以建立起一个比例关系
(VM-VL)/(VH-VL)=PHS/Pv
式中,PHS为当前VM对应的一个细分角度值,Pv为像素值,即单个CCD像元在当前系统码道上对应的角度值。结合粗值表和细分值,当前 CCD 影像对应的角度值为
VPi=PHi+PHSi
为提高精度,还可采用多个条码取平均值的方法,理论上n个样本取均值,精度提高n1/2倍。
三、准绝对式光学编码器(增量码道+索引码道)
8.准绝对式光学编码器(基本原理)
8.1优点
准绝对式编码器既保留了传统绝对式编码器测量数据为绝对数据的优点,又克服了传统增量式编码器容易错误计数和累计误差的缺点,其码盘光学图案比较简单,外形尺寸也比相同精度的传统绝对式编码器小。
8.2码盘特点
准绝对式编码器的码盘是由循环码道和索引码道组成的,循环码道与普通增量式码盘相同,索引码道则由类似于条形码的一系列连续二进制编码组成,与传统绝对式编码器相似。准绝对式编码器的光学图案如图1,其中外道为索引码道,内道为循环码道。
索引道上一圈中每个编码都是唯一的,用来确定绝对位置。同时,电子系统利用循环码道的输出信号来同步索引码道上位置编码的读取。绝对位置编码可以由多个光电探头并行读取,也可以由一个并行读取。
图10 准绝对式编码器的光学图案
8.3增量码盘设置效果
优点:
1.读取精度提高:
增量式编码器刻划精度更高,读头可以通过窗口光栅进行精确的读取,并通过光学技术来中和噪音。
2.消除解码时的边界误差影响:
与传统的绝对式相比,码道上一个由亮到暗(或相反)跳变发生的准确角度位置对解码的可靠性和精度没有影响。
3. 判定旋转方向:
由于采用了传统的增量式码道,可根据增量信号判断编码器的旋转方向
4.有效提高分辨率:
细分码道信号和索引道结合能有效提高分辨率
缺陷:
第一次被上电时,一般不能立即获得绝对位置,需经过一个小位移来获得当前位置,位移量的大小与码盘编码的位数有关。
8.4准绝对式光学编码器编码原理
8.4.1索引道的编码——循环移位二进制编码
1.编码特点
通过循环移位读取,得到一串二进制序列。对于对于分辨率为N的绝对式码盘,且有
(M,N为正整数),即可用M位二进制数唯一表示每一个位置。二进制数列满足:
1)二进制序列共有N位;2)二进制序列首尾相连,循环移位读取;3)连续M位构成一个输出数据;4)连续两个输出数据只有一位不同;5)N位二进制数序列对应N个M位的输出数据,这些输出数据互不重复。
对于编码的产生,可利用计算机程序生成,以确保满足循环移位编码特点且不重复,整体设计思路流程图如图10。比如采用较为成熟的克努特-莫里斯-普拉特操作(简称为KMP算法))
图11 编码设计算法的流程图
8.4.2循环道的划刻——循环二进制编码
对于循环增量码道,由均匀的明纹暗纹等间距划刻即可。
8.5准绝对式光学编码器译码原理
一般来说,读头从索引码道上读出二进制编码,经过整形放大后送至译码单元。循环二进制编码与自然二进制编码的对应关系事先存储在ROM中,将每个循环编码作为ROM的地址值,对应地址的数据值则存放其对应的位置编码,以完成解码工作。当系统读出索引码道的编码后,直接将其作为的地址值送往地址总线,来获得对应自然二进制码码值。
得到自然二进制的码值后,可以利少微处理器进行编程运算来得到角度信息,即将二进制转换为一卜进制并乘以单位位置代表的角度,得到了角度位置的粗码,将此粗码加上增量码道细分后得到的细分值,就可以得到最终的角度值。
8.6 增量道细分原理
电子学细分方法一般可区分为两种类型:幅度调制型和相位调制型。幅度调制是通过叠栅条纹信号的幅度变化判定相位差从而决定位移的;相位调制型是通过叠栅条纹的相位差来决定位移的。经过分析发现,叠栅条纹信号的正弦量与余弦量的比值即
式中A表示信号的幅值,基木上消除了幅度波动的影响,同时又隐含了确定的相位信息。
可以通过计算求出相位角
从而确定位移。令N表示细分份数,TN代表某一相角所对应的细分值,则
由于TN表达式是个多值函数,而细分是针对一个叠栅条纹信一号周期而言,需要在0~360度相角范围内把几处理成单值函数,从而确定
范围内任一
所对应得细分值。
8.7 辩向原理
传统的增量式编码器利用增量道正余弦方波的相位关系判断旋转方向。
新方法介绍
此种方法在判断旋转方向时,需要根据正余弦所对应二进制序列的先后关系判断,故需花费较多时间。
9.距离编码与增量式编码进行组合编码的双码道编码方式
9.1特点
采用全新的编码方式,即距离编码与增量式编码进行组合编码,只用两圈码道进行编码,减少码道的数量,采用单读数头结构,极大缩小编码器结构尺寸,直径φ25mm,经过电子学细分后可到达 16 位分辨力。目前在国内是一种全新的编码方式,突破了传统的编码原理,克服了传统编码器实现的局限性,从而实现高精度编码器小型化,可满足各部门对编码器轻便性、小型化、高可靠性的要求。
9.2技术原理
其原理及系统组成如图 1 所示:码盘与编码器的主轴相连,在码盘的一侧装有光源,另一侧装有狭缝及光电接收器,当主轴转动时,带动码盘同步转动,这样码盘与狭缝发生相对运动,光源发出的光线被切割调制成有规律的断续光线,经光电接收元件转换成电信号,送入处理电路进行放大、整形、译码等处理,以二进制代码电平输出,供用户采集使用。
图12 系统原理框图
如图,码盘由两圈码道构成:外圈为增量式编码,提供测量精度基准,内圈为距离编码,提供测量的绝对位置信息。
图13 码盘图片
外圈刻线密度较细,用作细分提高编码器测量精度,通过计数出到初始点增量数(步距),可以得到相对位置信息,如果要得到绝对位置信息,则需要内圈的距离编码来确定。内圈码道为标记不同角距离的零位标记点,将整周分成了 N 个绝对位置不同的区,其中每两个相邻标记点之间距离是变化的,且在整周上该距离的大小是唯一的,这样通过移动扫描任意两个相邻的距离领码点,则可读出该区的绝对位置,从而判断出码盘所在的绝对位。
9.3.电子学细分
系统首先对光电接收器送来的四路增量信号进行差分放大,经整形、模数转换后由单片机完成软件细分,细分为 64 份,可获得 16 对位移信息;零位距离码经放大、整形后由单片机译成绝对位置信息与增量信息一道,经译码、校正等逻辑处理,由串行 RS422 接口输出直接可用的 16 位自然二进制绝对位置信息。
10.基于伪随机序列的准绝对式光学编码器
10.1.基本原理
两条码道:与普通的增量式编码器基本一样的增量式码道由伪随机排列(m序列)的“黑白”序列构成的绝对式码道,这种序列每连续n位代表一个绝对位置,相邻的n位序列共享(n-1)位序列,这样设计的准绝对编码器能够达到2n的物理精度。
10.2.解码原理
和之前的差不多
- 软件细分
普通的细分电路在使用 AD 转换器时,将SIN、COS模拟信号输入到器件的模拟输入端,参考电压选择预先设置的固定电压值。但是这种方法没能考虑到系统运行过程中,因为 LED 信号强度变化、外界干扰或机械扰动等导致的SIN、COS信号强度发生变化,最终的细分精度也就受到影响。
2.基本原理
利用 AD 器件将 SIN、COS 分别采集入 FPGA,在 FPGA 内部利用软件除法器进行tan运算来实现细分。
11.简要总结
对于准绝对式码道(即增量码道+索引码道的双码道编码方式),其基本原理都是单码道编码加上一条增量码道,由于单码道的编码方式多种多样,因此组合的准绝对式码道也各有千秋。但绝大多数准绝对式码道,其组合方式,优缺点,编译码过程以及后续细分校验都相对类似,主要取决于索引码道对绝对位置(粗码)的处理。
四、双码道绝对编码器(两条绝对码道)
12.双码道绝对位置编码器及实验装置的研究
12.1特点
其码盘由内外两条码道所组成,光敏元件分别均匀布置在两条码道上,通过光敏元件的互相配合读取两条码道的码字信息,就可以得到圆周上确定位置的绝对编码。提出的双码道绝对位置编码方法既克服了传统多码道绝度位置编码器结构复杂、尺寸大的缺点,又解决了单码道绝对式编码器构造高位字长编码比较困难的难题。
12.2编码构造方法
双码道绝对位置编码器的编码构造方法,具体可以分为两种:格雷码和格雷码相结合(格雷码-格雷码),格雷码和序列相结合(格雷码-m序列)。因高阶m序列比较容易构造,格雷码和m序列相结合的方式更适合构造高位字长的双码道绝对位置编码。
12.2.1格雷码-格雷码
1.构造方法
(1)首先在码盘上刻画粗精两条码道,在粗码道上刻画N位均布式绝对位置编码。
(2)假设N位字长的格雷码可以确定N个均布式绝对位置编码,那么圆周码盘被相应的分为了N份。然后在粗码道每个编码位置所对应的精码道区域上按一定的规律刻画N个绝对位置编码。
(3)粗、精两条码道配合读数时,便可以在码盘旋转一周时唯一确定N*N个绝对位置,码盘最小分辨角度360/N2。
2.优点
将格雷码和格雷码相结合构造的双码道绝对位置编码具有唯一性,并且在每个区域内均满足格雷码的单变性特点;
克服传统格雷码方法因分辨率提高而导致码道数目增加的弊端,便于构造高位字长的绝对位置编码
12.2.1格雷码-m序列
1.构造方法
(1)首先同样在码盘上刻画粗、精两条码道,在粗码道上刻画n位字长均布式格雷码以确定N个绝对位置编码,由此可知,码盘被分为了N等份。
(2)然后在粗码道每个均布式绝对位置编码所对应的精码道区域内按照一定的规律刻画上相应的m序列,所刻画的m序列的阶数由粗码道上绝对位置编码的个数所确定,也就是N。
(3)N阶M序列的周期为2N-1,在码盘旋转一周,通过粗、精两条码道的互相配合读数,便可以唯一确定N(2N-1) 个绝对位置编码,码盘的最小分辨角度为360/ N(2N-1)。
2.特点
(1)将格雷码与m序列相结合构造的双码道绝对位置编码同样具有唯一性;
(2)并且利用序列可以快速方便生成的便利,可以很容易构造高位字长的绝对位置编码,同时克服了目前单码道高位字长的绝对位置编码构造起来比较困难的难题
12.3.容错方法
整体思想:根据双码道绝对位置编码中粗、精码道编码的构成特点,分别对粗、精两条码道的编码进行针对性的纠错容错,最后分别将纠错后的粗、精码道编码输出信号送到后续的电路中进行译码等处理。
12.3.1粗码道格雷码纠错容错
1.基本原理:
先将粗码道的读码元件输出信号利用锁存器进行锁存,然后将输入信号和输出信号一起送到运算器中进行逻辑运算,再将运算的结果作为地址送到存储器中进行寻址,最后将寻址的结果作为锁存器的控制端来控制锁存器的输出,这样正确的编码读取值便能顺利的从锁存器输出,错误的编码读取值不被锁存,锁存器输出为上一个编码读取值,从而便能有效将读码元件带来的粗大误差控制在一定的范围内。结构如图。
图14 格雷码纠错容错原理
12.2.2精码道m序列纠错容错
1.基本原理:
首先将精码道的N路读码元件输出的信号同时送往锁存器、反馈逻辑电路、
存储器,然后将反馈逻辑电路的输出信号与存储器的输出信号送到比较器中相比
较,最后把比较器比较的结果作为锁存器的控制端控制锁存器的输出情况,从而
便能实现精码道序列的纠错容错。
图15 编码纠错原理
五、细分技术
13.粗码精码细分技术(以16位绝对式编码器(输出10位粗码和512T增量信号)为例)
基本原理是利用 AD 器件将 SIN、COS 分别采集入 FPGA,在 FPGA 内部利用软件除法器进行tan运算来实现细分。
基于FPGA的编码器信号采集处理原理图如图3虚线框内所示。采集信号时FPGA主要完成AD控制;处理信号时FPGA完成精码处理,粗码处理,精粗校正、组合等功能,最后输出16位二进制形式的角位移信息。
图16 基于FPGA的编码器信号采集处理原理图
13.1编码器信号采集
采集编码器信号时FPGA主要实现对AD的控制。采用AD7864, 具有12位转换精度,12LBS线性度,4通道同步信号采集。细分时只采用其高8位,这样既能提高细分精度又能避免非线性失真对细分精度的影响。
13.2粗码处理
粗码处理时先将绝对位置信号A1-AN译码为自然二进制码E1-EN。
13.3精码处理
精码处理时首先对采集的正余弦数据做除法运算求其正切值,然后对所得正切值进行
反正切查表得到的细分值即为精码。
13.4精粗校正组合
在粗码中通常有一个码道作为校正码,它的作用只做校正而不参加读数,通常把粗码的最低位作为校正码,AN译码后得到的EN与正余弦信号的增量信号等周期。校正过程如下:
设ECC = EN&P_code(7)&P_code(6);
当ECC=“011”时,对EN-1进行减1操作;
当ECC=“100”时,对EN-1进行加1操作;
其中,P_code(7)、P_code(6)是处理后精码的最高位及次高位。
精粗组合时,16位二进制角位移信息表示为粗码高9位和精码高7位。
13.5硬件的tan细分电路设计基本方案
设计一个精密全波整流电路,将SIN、COS模拟信号转换成电压值比某一参考电压
VREF大的信号;同时利用两个AD转换器,一个 AD器件输入模拟信号是 SIN,参考电压信号上限和下限分别是 COS 和基准电平,另一个输入模拟信号是 COS,参考电压信号上限和下限分别是 SIN和基准电平。
13.6准绝对式码道的一种自检方式
基本算法思想:
- 系统上电首先进行初始化,也就是寻找初始的n位绝对位置编码以确定初始位置的过程;
- 如果初始化完成了,系统进入正常运行状态,实时获取索引位置和增量位置,并进行比对;
- 如果二者的位置保持一致,则系统稳定输出位置信号,并置 STATUS=0,表示输出正常,如果出现二者不相等,则系统自动进入初始化程序,并指示STATUS=1,表示输出无效
14.光栅莫尔条纹电子学细分技术(对准绝对式码盘中(增量信号)进行细分)
14.1背景
目前,大部分绝对式编码都采用绝对码道和增量码道相结合的方式来对绝对式编码尺进行细分,其中绝对码道用于绝对位置的粗定位,而增量码道则用于绝对位置的细定位,仍采用莫尔条纹细分技术,通过两者相结合的方式来提高绝对式编码的分辨率和精度,可以达到极高的精度以及分辨率。
14.2电子学细分的实现途径
莫尔条纹信号具有周期性,信号每变化一个周期就对应着空间上一个固定位移量,而电子学细分是根据信号周期性测量信号的波形、振幅或者相位的变化规律,在一个周期内进行插值,从而获得优于一个信号周期的更高的分辨力。
14.2.1直接细分
直接细分又称四倍频细分,基本原理是利用四个过零比较器(或微分电路)将获得的两路相位依次相差90 的莫尔条纹信号分别过零,得到图3.1所示的四路脉冲信号,不难看出,四路脉冲相位依次相差π2/ ,得到的四路脉冲信号通过单稳电路后即可实现对输出信号的四倍频细分,通过判断上升(下降)沿的出现顺序可判断莫尔条纹的移动方向。直接细分法对于传感器无附加的要求,电路也不复杂,原理简单,易于实现。
图17 直接细分原理图
电压比较器一般接成施密特触发电路的形式,使回差电压大于信号中的噪声幅值,回差电压越大,抗干扰能力越强,可避免比较器在触发点附近因噪声来回反转,但回差电压的存在使比较器的触发点不可避免地偏离理想触发位置,因此回差电压的选取应该兼顾抗干扰和精度两方面的因素。
14.2.2移相电阻链细分
移相电阻链细分的原理是将两个不同交变信号施加在电阻的两端,由于电压合成的移相作用,在电阻链的各电阻插头上将得到幅值和相位不同的一系列移相信号,利用这一原理我们可以把四相交流信号转换成n 相交流信号,再用电压比较器对n 相信号分别进行鉴幅、整形,便可以在莫尔条纹一个周期内得到n 个脉冲信号,从而达到细分的目的。
图18 移向电阻链细分矢量图
图3.2为移相电阻链细分空间矢量图,图中相位依次相差π2/ 的莫尔条纹信号经过移相电路后,空间上分裂为相位依次相差2π/n的输出,得到了不同相位的细分信号。图3.3为移相硬件电路实现,莫尔条纹信号u1、u2呈环形流向。
图19 移相电路
此方法的缺点是,电阻细分需要从输入信号中消耗一定的功率,细分数越大,消耗的功率也越大,电路元件也成倍增加,致使移相细分电路变得复杂,因而细分数就会受到相应的限制,另外电阻细分对细分信号的波形、幅值和正交性都有严格的要求,否则会带来测量结果的误差,因此不适合于进行高倍数细分。
14.2.3鉴相细分
莫尔条纹信号的鉴相细分的本质是利用信号所包含的相位信息,通过鉴相电路获
得与位置有关的相位角,根据相位角大小确定细分脉冲个数,得到位移。
- 相位调制细分
相位调制法的基本原理是按照三角函数中两角和的公式来模拟实现的。
其中的sinωt为载波信号,从加法器中得到的经放大、整形为方波后送入鉴相电路,使其与相对相位基准分频器输出的补偿信号
进行比较。当偏差信号
超过门槛时,移相脉冲门打开,输出移相脉冲;当
时系统平衡,关闭移相脉冲门,停发移相脉冲。
相对相位基准既是反馈环节,又是细分机构,分频数等于细分数。原理如图3.5所示。
图20 相位调制细分原理
莫尔条纹的相位调制细分法可以获得较高的细分数,通常可达到200--1000。但该方法对光栅运动的匀速性要求较高,要求调制信号的频率远远高于莫尔条纹信号的频率,否则在动态测量时,容易引入误差。该方法对电路中的滤波器设计也有一定的要求,对谐波量必须具有足够的抑制能力。
2.锁相倍频细分
相细分法相比相位调制法而言,本质上无太多区别,核心思想都是信号的鉴相,不同点在于前者的细分脉冲由移相脉冲门产生,后者的细分脉冲由压控振荡电路产生。
原理:系统由四个主要部件——鉴相器、环路滤波器、压控振荡器和n分频器组成。分频器的输出信号fout通过一个n分频器分频后,与莫尔条纹信号fin通过鉴相器鉴相,得到与相位差有关的电压信号,滤波后用于控制压控振荡器,使之输出原莫尔条纹信号的n倍频信号。
图21 锁相细分法原理
锁相细分法可以获得较高的细分数,对信号失真度无严格要求;但锁相倍频器对输入信号的角频率的稳定性要求相当高,而且输入信号只有一个,不能辨向,主要用于回转部件的角度与传动比等的测量,因此在使用范围上会受到一定的限制。
3. 时钟脉冲细分
原理:时钟脉冲细分实际上对信号脉宽的前瞻和预测,位移信号的细分转化为计时的方法,将微机时钟脉冲作为细分的依据。利用得到的前一个信号周期信息,计算得出下个信号位移区间内填入的微机时钟脉冲信号个数,由于时钟脉冲频率固定,因此根据脉冲数目就可以确定出要求的位移。
图22 时钟脉冲细分原理
优缺点:此方法的优点是,由于微机时钟脉冲频率一般很高,所以可以实现较高的分辨率,并且时钟脉冲细分技术可通过改变时钟频率或分频数很方便的改变分辨率,大大简化了硬件电路,避免了硬件电路中各种干扰带来的影响,保证了测量结果的稳定和可靠。缺点是由于第一个莫尔条纹信号缺乏预测信息,因此无法进行细分;且在细分区间内,必须保证移运动的匀速性或匀加速性,否则会导致较大的累积位移误差。
由于速度误差和信号相位误差的存在,时钟脉冲细分精度不可避免受到影响,因此该方法比较适合速度测量,应用范围受到限制。
4. 幅值分割细分
优点:传统的莫尔条纹信号的幅度分割细分是通过用与相位有关的幅值信号去和参考电压信号相比较,以此确定细分位移,并发出细分脉冲,细分脉冲数代表一定的位移。若仅依靠电压比较电路实现信号幅度分割,随着细分倍数的增加必然导致电路复杂,而依靠模数转换实现幅值的采集和比较,具有传统电压比较不可比拟的优点
缺点:若直接对正弦信号进行幅度分割,那么在不同相位下灵敏度是不同的,特别是当电压幅值接近峰值时,光栅尺需要移动一个较大的位移才产生一个微小的电压变化,从而产生较大细分误差,因此通常不能将莫尔条纹信号直接量化。
背景:
为了克服采样灵敏度不等造成细分误差缺点,目前最常用的幅度分割细分法主要有两种,分别为构造正切函数细分和构造近似三角函数细分,目的都是构造线性度良好的信号,利用判别卦限和查表实现细分是核心思想,不仅大大提高了莫尔条纹信号测量精度和分辨率,而且功能更容易扩展。
方法原理:
构造近似三角函数细分
原理:构造近似三角函数:,构造函数对应波形:
图23 构造三角函数波形
构造三角函数和原正余弦函数将一个信号周期平均分成 8 份,每份跨度对应于一个莫尔条纹信号的π/4,这样查表可得到某幅度处对应的相位,也就实现了更高倍数细分.
缺点:假定信号极值已知,因此细分前需要调整莫尔条纹信号幅值。
- 细分方法对比
表5 莫尔条纹电子学细分方法对比
15.绝对式编码线阵CCD细分技术(对绝对码进行细分)
15.1背景:
对于绝对式编码传感器,它是通过识别当前位置的编码信息从而获取绝对位置值,并不是通过栅距和一个莫尔条纹的正余弦周期相对应的方式,所以对正余弦电压信号的倍频细分方式不适用于绝对式编码。
15.2原理
以绝对式编码一位编码对应的刻线宽度单元为20um为例,每一位编码所对应的 CCD 的像素的数量为10。每一次译码需要 68 位编码,每一位编码所对应的CCD的像素的数量为10,那么理论上每次识别只需 CCD 上的680个像素。
当CCD所在的采集电路板与编码尺的相对位置固定时,一位编码所占的CCD像素的数量是固定的,换言之,每个CCD像素所占的位移量也是固定的,也就是一位编码对应的单元刻线宽度(20um)除以一位编码所占CCD的像素数量(10),所以本设计中每个CCD像素所对应的位移量为2um。可以以此作为最小位移分辨量进行更精确的定位。
图24 CCD细分示意图
线阵CCD细分技术通常采用参考线cT和测量基准线cF的差值来进行细分,所谓的参考线是指 CCD 中一个固定的像素位置值,他可以在0到680之间任意选取,但是需要注意的是如果在 0 到 680 中心区间 340-350 之外选取的话,会与实际距离相差一个固定的位移偏移量,本次设计中选择 CCD 的第 340 个像素为参考线的位置;而所谓的测量基准线则是指第1位编码的左边缘所对应的 CCD 上的像素位置和第 68 位编码的佑边缘所对应的CCD 上的像素位置的中心点。那么当前位置的精确值就可以表示为测量基准线到
参考线的像素数量乘以每个像素所对应的位移量。如公式所示:
如上图,位置1和位置2的译码后的粗测值是相同的,但是它们的测量基准线到参考线的位置不同,所以它们的精测值就不同。
六、游标编码方式
1.基本特点
根据游标卡尺的错位测量原理提出一种游标式的角位移绝对编码方式,这种方式在圆周上刻划两个或三个游标码道,两个码道的绝对码盘外圈对整周360°进行N等分,内圈M等分,其中M和N互为质数。三个码道的绝对码盘最外圈 N 等分 360°,中间圈N-1、等分360°,最内圈N-M等分360°,与游标卡尺的测量原理类似将其中一个码道的数据作为粗略测量结果,其他码道的数据作为精密测量结果,两个或三个数据相互配合实现绝对定位。
16.差极单码道绝对编码(基于游标编码)
16.1.基本内容
将时栅传感器的基本测量理论与游标编码方式相结合,对双码道游标编码演变到唯一码道绝对编码过程进行说明,介绍单码道绝对式时栅传感器的粗码与精码的获取方式。
16.2测量原理
通过将动、定盘平均分成两个部分,并对每个部分进行N和N+1两种不同方式的编码,利用差对极产生相位差的原理实现绝对测量。
16.2.1基本传感原理
基于游标卡尺的绝对测量方式,通常是采用两条码道之间相差一个对极的方式实现绝对测量,为了实现单码道绝对式,将两条码道整合编码到一条唯一码道上,把圆周平均分成两个部分并进行差对极编码。
图25 差极单码道绝对定位演变过程
上图为差对极双码道的结构形式和测量原理,在相等的长度空间内设置两条码道,分别为N+1对极的透光面阵列和N对极透光面阵列,用两个相对应的光电测头分别合成电行波信号,则两个电行波信号的相位差将随着位移的变化而发生线性变化,最大相位差为2π,用电信号之间的相位差就可以实现绝对位移的测量;将图(a)的两个码道分别变成左右两个半圆,便可合成图2.3(b)所示单码道结构形式,即等分数目不相等的左右两个半圆;进一步假设 N 等分的半圆为码值 0,N+1 等分的半圆码值为 1,为了实现 360°绝对值测量,设计定码盘的分布情况为“010101”的 6 个等分区间,用 6 个相应的测头合成 6 组电行波信号,当定盘和动盘码值相同时,取两个对应测头电信号(如 A0、A1)的相位差(即粗码),再加上对极内的测量值(即精码),就可以实现整周绝对式角度的精确测量。
16.2.2粗码信号产生原理
粗码信号通过测量两个相对应测头的行波相位差获得,设计两组对应的测头所在栅面的对极数不同,两组测头在转动相同角度时行波信号会出现相应的相位偏差,利用这个偏差实现绝对测量。动盘与定盘的排列方式如图 2.5 所示,组内(如A0、A1)测头分别相对排列,A0、B0、C0内正弦栅面的栅距为, A1、B1、C1内正弦栅面的栅距为
。动码盘右边为N等分180°,即栅距为N ,左边为(N+1)等分 180°,即栅距为N(N +1) 。
图26 码盘示意图
在图 2.5 中,A0、A1测头定盘分别与动盘所对区域的栅距相等,并且两者的栅距相差
(N (N +1)),以此类推,动、定盘在另外的角度位置时 B0、B1与 C0、C1具有相同的结论。当动、定盘发生相对运动时,A0和 A1两个测头的相对相位差为:
其中,n 表示的是测头经过的对极数,即对极的粗测。
根据差极绝对测量原理,当测头的定盘和动盘所对区域的栅面栅距相等时,可以实现绝对测量。
16.2.3精码信号产生原理
选择 N 等分区域的 A0、B0、C0测头作为精测测头,为了方便说明,取其中一个测头 A0进行介绍,如图 2.7 所示。定盘由上下双半正弦栅面拼接而成,并且每个相邻的透光面的间隔为 90°。动盘由交替透光、遮光的类矩形栅面阵列组成,其中,白色部分为全透光矩形栅面,绿色部分为不透光矩形栅面,下图是动、定盘在角位移为 0°位置的空间分布图,红色正弦曲线内部为定码盘的透光部分。在定盘的四组正弦栅面与动盘的类矩形栅面的空间调制作用下,动、定盘发生相对运动,四组正弦栅面的透光区域的空间位置始终依次相差 90°(依次将其命名为 0°,90°,180°,270°),并且透光区域的大小呈正弦规律变化。
图27 空间透光面透光面积变化图
当动盘从初始时刻位置开始从左向右旋转 的角度,两个盘的相对位置发生改变(由红色实线变到黑色虚线),利用极坐标求解光电池接收到的四个交变光场的透光面积,由四组正弦栅面的透光栅面面积的变化情况与透光栅面位移的相互关系,可得图 2.7 中四组正弦栅面(0°,90°,180°,270°)的透光面积的变化规律为:
使用交变光信号照射透光面,当输入交变信号为,将四组正弦栅面接收到的四路电压信号分别用U0,U90,U180,U270表示。对信号进行光电转换、求差、移相后,信号表达式为:
对上式信号中的直流分量滤除,当动、定盘发生相对运动时可得
由上式可知,当角位移δ 发生变化时,经正弦透光面的空间调制和后续转换电路合成后,可以获得一个峰峰值恒定,相位跟随角位移而变化的电行波信号,通过测量该信号与激励信号之间的相位差可以获得被测对象对极内精测空间角位移,其中δ 表示初始角位移,Δα =nΔδ 表示空间角位移与参考信号之间的时间相位差,所以空间角位移为:
精测信号测量原理如图2.8所示
图28 精测信号测量原理
同理,当 B0、C0测头的动、定盘码值相等时,使用同样的方式进行对极内精
测。最后将精测的值与粗测值相加可得最后的角位移值为:
七、图像编码方式
1.基本特点(一条码道结合图像编码器实现绝对编码)
这种编码方式结合已有的光电编码器码盘,将光源照射码盘所形成的图像通过光学系统放大,用图像传感器接收放大后的图像,再经过一系列的处理形成数字图像,最后将码盘上的数字图像信号经过处理转换成角度信息。
2.要求
实现这种测量方式对图像传感器的测量速度、图像处理器的计算能力都提出了较高的要求,并且需要精密的图像识别算法,总体来说实现难度较大。
八、角位移传感编码方式(脱离了一般编码)
(1)绝对式光栅
- 基本特点
在增量式传感器的码盘中增加了一种独特的黑白条纹进行绝对定位,它的实现需要融合传感器技术、图像处理技术、计算机控制技术为一体。
2.适用要求
传感器像素空间分辨率的限制和不均匀性的影响,以及模数转换出现的误差,对系统的数据处理算法有较高的要求,实现难度很大;
需要考虑编码的扩展性和累积误差等影响传感器精度的因素,编码的方式比较复杂与之对应的解码方式也不易掌握;
各公司基本当机密,公开资料极少。
(2)绝对式电容传感器
电容值的大小与两块极板之间的距离有关,所以电容式传感器的测量原理是利用电容值的变化来测量位移的变化。
--------------------------------------------------------------------------------------------------------------------
上述资料由本人经各种相关文献和材料亲自整理而得,如有侵权,烦请告知。