【OpenMMLab】mmyolo-v8训练自己的数据

该文指导如何正确安装和部署MMYOLO项目,包括创建conda环境、安装依赖库如PyTorch、MMCV和MMDet,从GitHub克隆mmyolo仓库,制作COCO格式的数据集,然后启动yolov8模型的训练,并通过nvidia-smi检查RTX2080TI显卡的使用状况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一步:正确安装部署mmyolo:https://github.com/open-mmlab/mmyolo

conda create -n mmyolo python=3.8 pytorch==1.10.1 torchvision==0.11.2 cudatoolkit=11.3 -c pytorch -y
conda activate mmyolo
pip install openmim
mim install "mmengine>=0.6.0"
mim install "mmcv>=2.0.0rc4,<2.1.0"
mim install "mmdet>=3.0.0rc6,<3.1.0"
git clone https://github.com/open-mmlab/mmyolo.git
cd mmyolo
# Install albumentations
pip install -r requirements/albu.txt
# Install MMYOLO
mim install -v -e .

第二步:手动制作数据集:

coco训练目录路径:

第三步:启动训练

python tools/train.py configs/yolov8/yolov8_s_fast_1×b12-40e_inspection.py

nvidia-smi查看rtx2080TI显卡使用情况:

### 关于 DOTA 数据集的预处理 在使用 OpenMMLab 框架(如 MMDetection 或 MMRotate)训练 DOTA 数据集时,通常需要对其进行预处理。这是因为 DOTA 数据集是一个面向遥感图像的目标检测数据集,其标注格式和其他常见目标检测数据集不同。具体来说: - **数据格式转换**:DOTA 数据集中的标注通常是旋转框的形式(即带有角度的方向性矩形),而许多目标检测框架默认支持的是水平边界框(Axis-Aligned Bounding Box, AABB)。如果使用像 MMRotate 这样的专门用于旋转框检测的框架,则需要将原始标注文件转换为该框架所支持的数据格式[^4]。 - **图像裁剪与增强**:由于遥感图像往往分辨率较高,直接加载整张图片可能会占用大量显存并增加推理时间。因此,在实际应用中,可以考虑对大尺寸图像进行分块裁剪,并针对这些子图单独生成标签文件。此外,还可以通过随机翻转、颜色抖动等方式进一步扩充样本数量以提高模型泛化能力。 - **锚点调整 (Anchor Setting)**:对于基于锚点的方法而言,合理设置初始先验框至关重要。考虑到 DOTA 中物体尺度变化较大以及存在较多细长形状实例等特点,在训练之前可能还需要重新计算适合当前任务的最佳 anchor 配置[^3]。 综上所述,在利用 openmmlab 下的相关工具链来完成 dota 数据集合建模工作前确实有必要执行上述几个方面的准备工作。 ```python import os from mmcv import Config cfg = Config.fromfile('configs/rotated_faster_rcnn/rotated_faster_rcnn_r50_fpn_1x_dota.py') print(cfg.pretty_text) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值