考研复习——大气科学基础第二章:地面和大气中的辐射过程
零、前言
本人为24考研人,一开始想考中山大学,后来改为国防科技大学,最终总分390,因为一直有用博客做笔记的习惯,考后打算将考研期间的复习笔记无偿分享出来,因为之前买的资料太垃圾了,又贵又垃圾实在看不惯他们,还不如自己的笔记
这个系列博客包含南信大大气物理学院,中山大学或国防科技大学0706大气科学研究生初试中超全知识点,三所学校所考内容参考书目相同,但考试题型不同,国防科技大学会考计算和推导,因此南信大、中大的考试内容是国防科大考试的子集,一篇顶三校考纲
各个知识点我会将重点标出以便大家复习,标了重点的一定要回参考书目中自己再弄懂一遍
文章内容大部分来自本人啃书得到,少部分来自购买资料,基本纯手敲
如果有疏漏和错误敬请在评论中指出,欢迎大家批评指正
一、辐射
- 辐射: 自然界中一切物体,只要温度在绝对零度以上,都以电磁波的形式时刻不停地向外传送热量,这种传送能量的方式称为辐射
- 辐射能:物体通过辐射所放出的能量,称为辐射能,辐射能的发射是以光子为单位,对辐射能的吸收也是以光子为单位
- 光子的能量与频率成正比,与波长成反比,高能量的光子为短波高频,低能量的光子为长波低频
二、电磁波谱
频率f,波长 λ ,波数 ν ,波速 c \lambda,波数\nu,波速c λ,波数ν,波速c,波数也有用k表示的
2.1 基本关系
- λ × f = c \lambda \times f=c λ×f=c
- ν = 1 λ \nu=\frac{1}{\lambda} ν=λ1(单位距离有几个波,即1cm距离内有多少个波)
2.3 按波谱分类 **
- 太阳表面温度6000k,发射的的辐射波长主要从0.4微米到0.7微米
- 地球表面温度为288k左右,发射的辐射波长主要从3微米到80微米
- 平流层下层大气温度大约为200k,发射的波长主要从4微米到120微米
- 可见波段0.4-0.76微米
- 大气科学中习惯将太阳发射的辐射称为短波辐射,地球发射的为长波辐射,分界线为4微米
三、辐射基本物理量(重点)
3.1 辐射通量(F)
指辐射在单位时间内通过空间某一表面的辐射能,就是以辐射形式发射,吸收,传递的功率,用单位J/s或W表示
3.2 辐射通量密度(E)
单位表面积上发射或截获的辐射通量,单位为 W / m 2 , E = d F d A W/m^2,E=\frac{dF}{dA} W/m2,E=dAdF
- 一般把接收面上的辐射通量密度叫做辐照度,发射出去的通量密度称为辐出度
3.3 立体角
定义:锥体所拦截的球面积与半径的平方之比
单位:sr(球面度)
一个球面的立体角为 4 π 4\pi 4π
球坐标系下的立体角计算
3.4 辐射强度(I)
在给定方向单位立体角内发射或接收到的辐射通量称为辐射强度,用公式 d F d Ω \frac{dF}{d\Omega} dΩdF表示,单位为 W / S r W/S_r W/Sr
3.5 辐亮度(辐射率)(L)
在发射体或接收体表面某一面元处的垂直于任意给定方向单位面积上的辐射强度,称为辐亮度或辐射率,记为L,单位是 W / ( S r . m 2 ) W/(S_r . m^2) W/(Sr.m2)
若是单色辐亮度,加上单位波长 W / ( S r . m 2 . μ m ) W/(S_r . m^2.\mu m) W/(Sr.m2.μm)
L = d I d A c o s θ = 1 c o s θ d E d Ω L=\frac{dI}{dAcos\theta}= \frac{1}{cos \theta}\frac{dE}{d\Omega} L=dAcosθdI=cosθ1dΩdE等于是垂直与该面积方向的单位面积的辐射强度
- 如果从表面元上发射的辐亮度是各向同性的,这种辐射源叫做朗伯体
- 辐射强度和辐亮度都是对于漫射辐射而言的,对于平行辐射这种定义没有定义,因为平行辐射无法计算立体角
- 太阳对地球的张角非常小,很多实际问题中将太阳的直射光辐射看作是平行辐射
3.6 单色辐亮度
- 上述的物理量其实与波长或频率都有关
- 单色辐亮度 L λ L_\lambda Lλ单位为 W / ( S r . m 2 . μ m ) W/(S_r.m^2.\mu m) W/(Sr.m2.μm)
- 在一定波长范围的辐亮度可以写成 L = ∫ λ 1 λ 2 L λ d λ L=\int_{\lambda _1}^{\lambda _2}L_\lambda d\lambda L=∫λ1λ2Lλdλ
四、物体的辐射特性
辐射能F射到物体表面上,能量分为三部分,分别是吸收,反射,投射,三者占总辐射量的比例分别为吸收率,反射率,透过率
- 对于不同的波段,有不同波段对应的吸收率,反射率,透过率
4.1 黑体与灰体(名词解释)
- 黑体:能够完全吸收所有辐射到它表面的电磁辐射(包括可见光、紫外线、红外线等),而且不会反射或透射任何辐射。一个真正的黑体能够以任何温度发射热辐射,并且其辐射的光谱分布只与其温度有关,与黑体的材料和形状无关
- 灰体:是相对于黑体而言的一个概念,它在理论上不会完全吸收或完全反射所有辐射,而是部分吸收并部分反射或透射辐射。灰体可以通过其发射出的辐射能量的比例来描述,该比例称为发射率
五、热辐射基本定律(重中之重)
5.1 黑体辐射定律(普朗克定律)
- B λ B_\lambda Bλ为单色辐亮度,h为普朗克常数,k为玻尔兹曼常数, λ \lambda λ为波长
黑体光谱特点
:
-
理论上任何温度的绝对黑体都放射从0到无穷大波段的辐射
-
黑体的温度越低,其积分辐出度会减小
-
黑体温度越高,其辐射峰值对应波长会变短
-
温度高的黑体比温度低的黑体在各个波段的辐亮度都要大
5.2 维恩位移定律
通过对普朗克函数对波长求偏导,发现对于确定的温度,其辐亮度峰值对应的波长为 λ m a x = k w T = 2897.8 T \lambda_{max}=\frac{k_w}{T}=\frac{2897.8}{T} λmax=Tkw=T2897.8,波长单位为微米, k w k_w kw为韦恩常数
5.3 史蒂芬玻尔兹曼定律
通过对普朗克函数积分,发现辐出度与温度的四次方成正比
E
b
(
T
)
=
σ
T
4
E_b(T)=\sigma T^4
Eb(T)=σT4,其中
σ
\sigma
σ就是史蒂芬玻尔兹曼常数,
σ
=
5.670373
×
1
0
−
8
W
/
(
m
2
K
4
)
\sigma=5.670373\times10^{-8} W/(m^2 K^4)
σ=5.670373×10−8W/(m2K4)
5.4 基尔霍夫定律
- 首先,如果将一个吸收能力强和一个吸收能力弱的物体放在一起,经过足够长的时间两者最终会达到辐射平衡,即温度相同
- 因此吸收能力强的,只有辐射能力也强;吸收能力弱的,只有辐射能力也弱才可能达到平衡
- 因此,有如下推论
F 1 A 1 = F 2 A 2 = f ( T , λ ) \frac{F_1}{A_1}=\frac{F_2}{A_2}=f(T,\lambda) A1F1=A2F2=f(T,λ)即两者比值相同只与温度和波长有关的普适函数 - 再者,黑体的吸收率为1,即A=1,那么其辐出度F就是该普适函数
- 因此,任何物体辐出度(发射率)和吸收率之比就等于该温度下黑体的发射率
- 移项一下就是——该物体的发射率 / 该温度下黑体的发射率=吸收率
5.5 光谱比辐射率
实际中没有绝对黑体,因此实际物体发射辐射的能力都比黑体发射能力小
对于同一温度T下,对任意给定的波长,物体发射的光谱辐出度 / 同温度下黑体的光谱辐出度 定义为光谱比辐射率即 ϵ λ , T = E λ ( T ) E λ b ( T ) \epsilon_{\lambda,T}=\frac{E_{\lambda(T)}}{E_{\lambda b(T)}} ϵλ,T=Eλb(T)Eλ(T)
六、太阳和地球辐照度的比较
- 太阳98%的辐射集中在0.17到4微米
- 地面辐射中98%的能量集中在3.33到80微米
- 大气辐射中98%能量集中在4.55到109.1微米
- 太阳光谱中,可见光能量占44%,红外48%,紫外8%;因此太阳辐射中红外辐射才是占比最高的
- 对于短波和近红外,可以只考虑太阳辐射;对于远红外可以只考虑地球辐射,但对于中红外(3-7微米)需要同时考虑地球和太阳辐射
七、大气对辐射的吸收作用(重点)
- 吸收太阳短波最多的气体是水,其次是氧气和臭氧
- 吸收长波辐射最主要的气体是水,其次是二氧化碳,臭氧,甲烷和一氧化二氮
- 每种气体在每个波段的吸收对于大气平衡的重要性取决于:吸收线强度和气体的含量及空间分布
7.1 水的吸收 **
- 水主要集中在大气下层,吸收作用主要在对流层
- 吸收带主要在红外区,不但吸收了约20%太阳能量,同时几乎覆盖整个长波辐射波段
- 不管是短波还是长波,水的吸收比例都是最大的
7.2 氧气与臭氧的吸收
- 氧气的紫外吸收光谱主要位于小于0.25微米的紫外区,尤其在0.125到0.2微米,称为舒曼——龙格吸收带
- 氧气在可见光波段还有三个较弱的吸收带
- 臭氧在0.24-0.26微米吸收作用很强,称为赫兹堡带
- 臭氧在红外区也有几个较大的吸收带
- 臭氧层能吸收2%的太阳辐射,这也导致平流层温度很高
7.3 二氧化碳的吸收
- 二氧化碳吸收带主要位于红外波段
- 在14.7微米附近的吸收带最为重要
7.4 大气窗区 ***
在大气的主要吸收带之间有一些吸收很弱的准透明区,称为大气窗区
- 最著名的大气窗区位于8-12微米,在之中9.6微米附近有个较强的臭氧吸收带
- 与地面温度300k对应的黑体辐射能量就主要集中在10微米附近,而这一波长范围很少有辐射被吸收,故地面发出的长波辐射透过这一窗口可以发射到宇宙空间
7.5 气溶胶和云对辐射的吸收
大气气溶胶对辐射同时具有吸收衰减和散射衰减的双重作用,一般认为气溶胶粒子对太阳短波辐射吸收小于散射
对于长波辐射,较薄的云层可视为黑体;
- 一方面云能吸收地表的长波辐射,并向下发射长波辐射,加热地表
- 另一方面,云可以将部分入射太阳辐射反射回外太空,对地表起冷却作用
- 这两种效应取决于云量,云高,分布,含水量和云中微雾力过程等等
7.6 大气吸收光谱图解读(重点,很可能考)
那张图就是书中很大一张各个物质对各波段吸收作用纵向对比的图,得到的结论如下:
-
大气的吸收具有强烈的选择性
-
在0.29微米以下的吸收率几乎为1,也就是将紫外辐射几乎全部吸收了(主要吸收气体和氧原子,氧气和臭氧)
-
在可见光区域大气的吸收很少
-
在近红外开始有一些水汽的吸收带,在2.7微米附近,水汽和二氧化碳都有个强吸收带
-
在红外波段,大气的吸收较强,主要是水汽和二氧化碳的吸收,对于14微米以外波段大气可以认为是黑体
-
在8-12微米波段大气的吸收很弱,称为大气的透明窗区,在这之间9.6微米附近有个臭氧的强吸收带
八、吸收相关物理量
8.1 吸收截面
一个粒子的吸收截面就是:粒子吸收的辐射能等于面积 σ \sigma σ从入射辐射场中截获的辐射能
假设入射辐射能为E,则粒子吸收的辐射能为 σ E \sigma E σE
8.2 吸收系数 (重中之重)
8.2.1 质量吸收系数
k a b , λ k_{ab, \lambda} kab,λ表示单位质量的粒子的吸收截面之和**
- 单位是 m 2 / k g m^2/kg m2/kg
8.2.2 体积吸收系数
β a b , λ \beta_{ab, \lambda} βab,λ表示**单位体积粒子的吸收截面之和
- 单位是 m − 1 m^{-1} m−1
8.2.3 两者关系
β = k ρ ,此处的 ρ \beta = k\rho,此处的\rho β=kρ,此处的ρ是具有吸收作用气体的密度,而不是大气总密度
九、比尔定律(重中之重,23年计算题)
L λ ( l ) = L λ ( l 0 ) e x p ( − ∫ l 0 l k a b , λ ρ d l ) = L λ ( l 0 ) e x p ( − ∫ l 0 l β a b , λ d l ) L_{\lambda}(l)=L_{\lambda}(l_0)exp(-\int_{l_0}^l k_{ab, \lambda} \rho dl)=L_{\lambda}(l_0)exp(-\int_{l_0}^l \beta_{ab, \lambda} dl) Lλ(l)=Lλ(l0)exp(−∫l0lkab,λρdl)=Lλ(l0)exp(−∫l0lβab,λdl)
- 只考虑了
吸收
之后简化的辐射基本方程 - 吸收中辐射强度随光学厚度e指数衰减
9.1 光学质量
定义 u = ∫ 0 l ρ d l u=\int_0^l \rho dl u=∫0lρdl为光学质量,表示沿传输路径单位面积气柱内吸收或散射气体的总质量,单位为 k g / m 2 kg/m^2 kg/m2
9.2 光学厚度
沿辐射传输路径,单位截面上所有吸收和散射物质产生的总衰减
u = ∫ l 0 l k a b , λ ρ d l = ∫ l 0 l β a b , λ d l u=\int_{l_0}^l k_{ab, \lambda}\rho dl=\int_{l_0}^l \beta_{ab, \lambda} dl u=∫l0lkab,λρdl=∫l0lβab,λdl
- 体积消光系数在一段距离的积分就是光学厚度
- 将比尔定律中的e指数衰减的幂指数(取正),就是光学厚度
9.3 透过率
τ = e x p ( − ∫ l 0 l k a b , λ ρ d l ) = L ( l ) L ( l 0 ) \tau=exp(-\int_{l_0}^l k_{ab, \lambda}\rho dl)=\frac{L(l)}{L(l_0)} τ=exp(−∫l0lkab,λρdl)=L(l0)L(l)
- 出射辐射强度比上入射辐射强度就是透过率
- 也就是比尔定律中的指数部分
- 实际工作中关注的是一个波数区间内的平均透过率 τ Δ ν = 1 Δ ν ∫ Δ ν τ ν d ν \tau_{\Delta \nu}=\frac{1}{\Delta \nu}\int_{\Delta \nu} \tau_{\nu}d\nu τΔν=Δν1∫Δντνdν
- 严格意义上为了得到投射函数,需要考虑吸收系数在波数范围内的变化情况,通过数值积分计算平均透过率,这种方法叫做逐线积分
十、分子能量
- 分子内含的能量分为:电子能量,振动能量,转动能量
- 其中电子能级跃迁时光谱带在X射线,紫外,可见光部分;振动能级跃迁时在红外和微波
- 分子的吸收光谱和辐射光谱是一致的
10.1 谱线增宽
- 理论上的谱线是单色的,宽度为0,但事实上谱线并不是一条严格的几何直线,有宽度;谱线增宽使谱线相互重叠,某一波数处的吸收谱线强度应该是所有谱线在该处叠加的总和
- 使谱线增宽的原因有:自然增宽,多普勒增宽,压力增宽
- 其中多普勒增宽与压力无关,而压力增宽随压力而减小,因此低层(30km以下)以压力增宽为主,高层以多普勒增宽为主
十一、大气对辐射能的散射
散射不产生分子内能的变化,同时不存在选择性,是全波段的,但是在大气中主要考虑大气对短波辐射的散射,对长波辐射的散射太弱了
11.1 尺度参数(重点)
定义 α = 2 π r λ \alpha=\frac{2\pi r}{\lambda} α=λ2πr
表示了粒子尺度与电磁波波长之间的比例关系,根据这个关系可以大致分为如下三种情况:
- 尺度参数远小于1:瑞利散射
- 0.1<尺度参数<50:米散射
- 尺度参数>50:几何散射
11.2 散射截面(重点)
σ \sigma σ表示散射截面,是一个等效截面,表示粒子散射光的总能量等于数值为 σ \sigma σ的一块面积从入射光中截取的量,反映粒子的散射能力
11.3 散射函数
I
(
R
,
θ
,
ϕ
)
=
I
0
R
2
σ
(
θ
,
ϕ
)
I(R,\theta, \phi) = \frac{I_0}{R^2}\sigma(\theta, \phi)
I(R,θ,ϕ)=R2I0σ(θ,ϕ)
其中\sigma$表示散射函数,指单位光强入射时,在单位距离上测到的散射光强度
对散射函数立体角进行积分可以得到单位光强入射时一个粒子散射掉的总能量,这个积分出来的值就是消光截面,即粒子散射光的总能量等于数值为 σ s c \sigma_{sc} σsc的一块面积从入射光中截取的能量
11.4 相函数
p
(
θ
,
ϕ
)
=
4
π
σ
(
θ
,
ϕ
)
/
σ
s
c
p(\theta, \phi)=4\pi \sigma(\theta, \phi)/ \sigma_{sc}
p(θ,ϕ)=4πσ(θ,ϕ)/σsc
为某个方向的散射能力与平均散射能力之比,是个无量纲量
11.5 单次散射反照率
w
=
σ
s
c
/
σ
e
x
w=\sigma_{sc}/\sigma_{ex}
w=σsc/σex
即散射在消光中所占比例
11.6 不对称因子
g
=
c
o
s
θ
ˉ
=
∫
σ
(
θ
,
ϕ
)
c
o
s
θ
d
Ω
∫
σ
(
θ
,
ϕ
)
d
Ω
g=\bar{cos \theta}=\frac{\int \sigma(\theta, \phi)cos\theta d\Omega}{\int \sigma(\theta, \phi)d\Omega}
g=cosθˉ=∫σ(θ,ϕ)dΩ∫σ(θ,ϕ)cosθdΩ
以
c
o
s
θ
cos\theta
cosθ以散射相函数为权重的平均值
若散射函数是前后对称的,g为0,因此g越小说明前后向散射越对称
同时尺度参数越小,前后对称程度越大,g越小
11.7 复折射指数
电磁波入射到某种物质时,因其在真空中和该物质中的传播速度不同,其传输路径会改变
- N λ = n r + i n i , N λ N_\lambda=n_r+in_i,N_\lambda Nλ=nr+ini,Nλ为复折射指数,后方的实部表示物质对电磁波的散射特性,虚部表示对电磁波的吸收特性
11.8 效率因子(重点)
因为一般来说,散射/吸收/消光截面与与几何截面并不相等,因此用散射效率因子=散射截面/几何截面,吸收和消光效率银子同理
瑞利散射(重中之重)
瑞利散射认为散射相函数有对称性,只与散射角有关,与方位角无关
在距离粒子d处,散射角为 θ \theta θ处的散射通量密度公式为 E θ = E 0 8 π 4 r 6 λ 4 d 2 ( n 2 − 1 n 2 + 2 ) 2 ( 1 + c o s 2 θ ) E_\theta=E_0\frac{8\pi^4 r^6}{\lambda^4 d^2}(\frac{n^2-1}{n^2+2})^2(1+cos^2\theta) Eθ=E0λ4d28π4r6(n2+2n2−1)2(1+cos2θ)
-
散射光强度与波长的四次方成反比
-
散射光强与半径的六次方成正比
-
与距离的平方成反比
-
空间分布简单地服从 ( 1 + c o s 2 θ ) (1+cos^2\theta) (1+cos2θ)
-
在前向和后向的散射最强,垂直于入射方向最弱
-
入射光为自然光的时候,前后向散射呈对称分布
-
对其整个空间积分得到总辐射通量,定义 σ \sigma σ粒子散射截面
米散射(重中之重)
- 几何散射和瑞利散射都可以看成是米散射的一种特例
- 随着粒子尺度参数增大,前向散射光在总散射光中的比值迅速增大
- 半径与波长相当时,散射效率因子达到峰值,之后会趋向于2
十二、大气层光学现象
12.1 虹
- 由水滴对太阳光的折射和水滴内部的反射作用产生,呈弓形圆弧状
- 当背对太阳,而面前有大量大水滴存在于空中,那么太阳光在水滴经过两次折射和一次内反射后达到我们眼中的光线就可能构成虹
- 虹是内紫外红,霓是内红外紫
- 常见于雨滴直径约为几毫米的降水过程,此时云滴尺寸远大于太阳光波长,发生几何光学折射产生
12.2 晕
- 高空有由冰晶组成的薄云存在,由于冰晶对日光或月光的折射和反射,引起的一系列光学现象统称为晕
12.3 白昼天空背景光
- 白天的天空背景光主要由:大气对短波辐射的散射作用决定
- 需要注意的是,在考虑短波辐射时,光学厚度越小,散射的越少,天空越暗,因此当太阳天顶距较小时,由于光学厚度的减少,天空会变暗
12.4 晴天是蓝天而阴天是灰白色的原因(重点)
- 晴天下气溶胶较少,空气中主要是分子大气散射太阳光,分子大气的散射属于瑞利散射,其散射能力与光波长的四次方成反比,因此对短波的散射能力远大于长波,因此晴天天空呈蓝色
- 而阴天或空气中气溶胶含量较多时,气溶胶在散射中起的作用较大,气溶胶对于可见光的尺度因子较大,其散射光波长依赖关系小,散射光呈白色
十三、太阳辐射
13.1 太阳常数(重点)
在日地平均距离 d 0 d_0 d0处大气上界与太阳光垂直面上的太阳辐照度,用 S ˉ 0 \bar S_0 Sˉ0表示,一般取1367 W / m 2 W/m^2 W/m2
- 若日地距离为d的时候 S 0 = S ˉ 0 ( d 0 d ) 2 S_0=\bar S_0(\frac{d_0}{d})^2 S0=Sˉ0(dd0)2
13.2 时角
ω = 2 π T ( t − 12 ) , T = 24 h \omega=\frac{2\pi}{T}(t-12),T=24h ω=T2π(t−12),T=24h
13.3 太阳高度角
太阳光束与水平面的夹角称为太阳高度角,与天顶角互余
计算公式:
s
i
n
h
θ
=
s
i
n
φ
s
i
n
δ
+
c
o
s
φ
c
o
s
δ
c
o
s
ω
sinh_\theta=sin\varphi sin\delta+cos\varphi cos \delta cos \omega
sinhθ=sinφsinδ+cosφcosδcosω
- 其中 δ \delta δ为太阳赤纬(为太阳与地心连线与赤道平面的交角),就是太阳直射的纬度
- ω 为时角 \omega为时角 ω为时角,正午时角为0,每小时变化15度, ω = 2 π T ( t − 12 ) , T = 24 h \omega=\frac{2\pi}{T}(t-12),T=24h ω=T2π(t−12),T=24h
13.4 大气上界水平面上的太阳辐射
-
由于不同时刻太阳处于不同的高度角,入射到大气上界水平面上的太阳辐照度应为其在垂直方向的投影,即
S 0 ′ = S 0 s i n h θ = S ˉ 0 ( d 0 d ) 2 ( s i n φ s i n δ + c o s φ c o s δ c o s ω ) S_0'=S_0 sinh_\theta=\bar S_0(\frac{d_0}{d})^2(sin\varphi sin\delta+cos\varphi cos \delta cos \omega) S0′=S0sinhθ=Sˉ0(dd0)2(sinφsinδ+cosφcosδcosω) -
如果要计算一天的太阳辐射总量,需要确定昼长,太阳升起和落下的时候 h θ h_\theta hθ为0,由此可以解出日出和日落对应的太阳时角
-
知道了日出和日落的太阳时角,对其进行积分就可以得到一天该点处的
Q d = ∫ − ω ω S ˉ 0 ( d 0 d ) 2 ( s i n φ s i n δ + c o s φ c o s δ c o s ω ) T 2 π d ω Q_d=\int_{-\omega}^{\omega}\bar S_0(\frac{d_0}{d})^2(sin\varphi sin\delta+cos\varphi cos \delta cos \omega)\frac{T}{2\pi}d\omega Qd=∫−ωωSˉ0(dd0)2(sinφsinδ+cosφcosδcosω)2πTdω
积分结果为 Q = T π S ˉ 0 ( d 0 d ) 2 ( ω 0 s i n φ s i n δ + c o s φ c o s δ s i n ω 0 ) Q=\frac{T}{\pi}\bar S_0(\frac{d_0}{d})^2(\omega_0 sin\varphi sin\delta+cos\varphi cos \delta sin \omega_0) Q=πTSˉ0(dd0)2(ω0sinφsinδ+cosφcosδsinω0),此处T取86400s
13.5 全年大气上界日辐射总量分布特征
- 赤道地区在春分和秋分存在极大值,因为太阳直射
- 低维度的日辐射总量的年际变化较小,高纬度较大
- 北半球夏季的日辐射总量随纬度变化不大,但是随着进入冬季,高纬度的日辐射总量迅速减小,极圈内甚至减为0
- 在夏至日,北半球的日辐射总量向极圈是增加的,到极圈内会出现极昼,其日总量是赤道的1.37倍,这是因为日照时间长导致的,极圈温度肯定不如赤道高
十四、地面太阳辐射的计算
太阳辐射从上界到地面还要经过衰减
14.1 不考虑密度随高度变化以及折射情况
由比尔定律,地面接收到的辐照度为:
S
λ
=
S
0
e
x
p
(
−
∫
0
∞
k
ρ
d
l
)
=
S
0
e
x
p
(
−
∫
0
∞
k
ρ
s
e
c
θ
d
z
)
S_\lambda=S_0exp(-\int_0^\infty k\rho dl)=S_0exp(-\int_0^\infty k\rho sec\theta dz)
Sλ=S0exp(−∫0∞kρdl)=S0exp(−∫0∞kρsecθdz)
- 在这其中 θ 为天顶角,令 m = s e c θ \theta为天顶角,令m=sec\theta θ为天顶角,令m=secθ,称为相对大气质量数
- 这样上式可以写成 S λ = S 0 e x p ( − m ∫ 0 ∞ k ρ d z ) S_\lambda=S_0exp(-m\int_0^\infty k\rho dz) Sλ=S0exp(−m∫0∞kρdz)
- 令 σ = ∫ 0 ∞ k ρ d z \sigma=\int_0^\infty k\rho dz σ=∫0∞kρdz称为大气的垂直光学厚度
14.2 相对大气质量数
- 不考虑大气折射的平面平行大气中 m = s e c θ m=sec\theta m=secθ
- 其准确定义是相对大气质量指日光自 θ \theta θ角倾斜入射时与自天定入射时候的光学厚度之比
- 对于不同成分的大气,有不同的经验公式可以使用来近似计算光学厚度
十五、到达地面的散射辐射
- 散射辐射是漫射辐射
- 为了处理方便,往往假设漫射辐射是各向同性的
- 一般太阳高度角越高,太阳透明度差时,散射辐射增强;反之减弱
- 天空出现高积云或卷云的时候对太阳光的散射会很强
十六、云对太阳辐射的作用
总体上,云对太阳的散射作用大于吸收作用
16.1 吸收作用
- 主要取决于云的光学厚度,单次散射比和云的散射相函数
- 一般而言,云越厚,粒子越大,其吸收越强
- 当云厚超过500m,吸收率近似为常数
- 云的吸收率随太阳高度角的升高而增大
16.2 反射作用
- 云是太阳辐射的良好反射体,它将部分入射太阳辐射反射回太空,对其下的大气和地面起冷却作用
- 云的反照率取决于云的厚度,相态,含水量等
- 一般云越厚,反照率越大,云厚大于1000m时,反射率可达80%以上
- 云对太阳辐射的反射随波长差异很大,可以根据此原理繁衍出云的光学厚度和云滴有效半径
- 在云的含水量相同的情况下,云滴较小的云有更大的光学厚度,能反射更多的太阳辐射
十七、 阳伞效应
由于云和气溶胶对太阳辐射的散射作用,导致到达地面的太阳辐射能减少
十八、地气云对太阳辐射的反射和吸收
到达地面的太阳辐射为直接辐射和散射辐射之和
地面实际吸收的太阳辐射总量为 ( S ′ + S D ) ( 1 − R g ) , R g 为地面对太阳的反射率, S ′ 为直接辐射, S D 为散射辐射 (S'+S_D)(1-R_g),R_g为地面对太阳的反射率,S'为直接辐射,S_D为散射辐射 (S′+SD)(1−Rg),Rg为地面对太阳的反射率,S′为直接辐射,SD为散射辐射
- 地气系统的平均反照率为0.3
- 在大气系统吸收的太阳辐射中,大气的吸收不到30%,地表吸收超过70%
18.1 地面长波辐射特性
- 地面对于长波辐射的吸收率近于常数,认为地面为灰体
- 需要注意的是雪和纯水对长波辐射的吸收率极高,但对短波辐射的吸收率较低
18.2 地面辐射
- 由基尔霍夫定律和史蒂芬玻尔兹曼定律,地面的积分辐出度为:
E = A g σ T g 4 = ϵ g σ T g 4 E=A_g\sigma T_g^4=\epsilon_g\sigma T_g^4 E=AgσTg4=ϵgσTg4 - 由长波辐射记可以测出地面的总辐出度,若同时测出地面温度,就可以计算出地面的长波发射率(吸收率)
18.3 大气辐射
大气对短波吸收较少,但对长波辐射却能强烈吸收,主要的吸收气体有水汽,液态水,二氧化碳,臭氧
同时大气吸收了来自地面的长波辐射后,按自身温度向外辐射,主要由水汽,液态水,二氧化碳等发射辐射
18.4 云的辐射
云在长波辐射传输中以吸收和发射辐射为主,云对其上或以下的大气层实质上构成了界面,一般把低云视为黑体
十九、平面平行大气的长波辐射传输方程(施瓦氏方程)
19.1 微分形式的推导
同时考虑发射和吸收,先来研究吸收,辐亮度的变化量表示为
d
L
=
−
β
L
d
l
(
单位体积内所有吸收截面之和
∗
辐射能相关量
=
吸收掉的能量
)
dL=-\beta L dl(单位体积内所有吸收截面之和 * 辐射能相关量=吸收掉的能量)
dL=−βLdl(单位体积内所有吸收截面之和∗辐射能相关量=吸收掉的能量)
又根据基尔霍夫定律,吸收率 / 发射率 = 该温度下黑体的辐出度
由发射引起的
L
的变化
d
L
L
=
β
L
d
l
L
B
(
T
)
=
吸收率
∗
该温度下黑体辐出度
=
发射率
由发射引起的L的变化\frac{dL}{L}=\frac{\beta Ldl}{L}B(T)=吸收率*该温度下黑体辐出度=发射率
由发射引起的L的变化LdL=LβLdlB(T)=吸收率∗该温度下黑体辐出度=发射率
将两者结合在一起,即同时考虑气层的发射和吸收
d
L
=
−
β
(
L
−
B
(
T
)
)
d
l
=
−
β
(
L
−
B
(
T
)
)
d
z
c
o
s
θ
dL=-\beta(L-B(T))dl=-\beta(L-B(T))\frac{dz}{cos\theta}
dL=−β(L−B(T))dl=−β(L−B(T))cosθdz
长波辐射在大气中的传输过程与太阳辐射传输的不同点:
- 地面和大气的辐射是漫射辐射们需要包括对立体角的积分
- 大气吸收长波辐射的同时还会向外辐射,需要同时考虑发射和吸收
- 空气分子对长波辐射的散射可以忽略
假设大气是水平均一的,大气中各种成分的温度和密度仅是高度的函数
施瓦氏方程的核心思想就是在某高度处的大气即会发射辐射,也会吸收辐射,发射的辐亮度用 k a b B ( T ) k_{ab}B(T) kabB(T)表示,由基尔霍夫定律发射率=吸收率*该温度下黑体的辐出度,因此用吸收率乘以该温度下黑体的辐出度就为该点的发射的辐出度
19.2 对微分形式进行积分得到最终形式
L
(
δ
1
)
=
L
(
δ
0
)
e
−
δ
0
μ
+
∫
δ
1
δ
0
B
[
T
(
δ
)
]
e
−
δ
′
−
δ
μ
d
δ
′
μ
L(\delta_1) = L(\delta_0)e^{-\frac{\delta_0}{\mu}}+\int^{\delta_0}_{\delta_1}B[T(\delta )]e^{-\frac{\delta'-\delta}{\mu}}d\frac{\delta'}{\mu}
L(δ1)=L(δ0)e−μδ0+∫δ1δ0B[T(δ)]e−μδ′−δdμδ′
物理意义:接收端接收到的辐亮度 = 发射端的辐亮度经过衰减后的辐亮度+之间大气发射后经过剩下距离衰减后的积分结果
需要注意的是:右侧第二项如果写成+的,那积分的路径是从接收端到发射端,因为使用的坐标是
δ
\delta
δ的光学厚度坐标,与z为正方向的坐标方向是相反的,需要特别留意
推导部分有点复杂,需要同乘一个东西后凑微分,之后再积分,比较巧妙
二十、地面、大气、地气系统的辐射平衡(重点)
- 净辐射:收入辐射与支出辐射能的差值
- 从全球全年平均来看,整个地气系统是达到辐射平衡的
- 地气系统平衡温度:将地球和大气作为一个整体并视其对长波辐射为黑体,则它在辐射平衡状态下具有的温度称为地气系统有效温度记作 T e T_e Te
20.1 辐射平衡状态下的地气系统温度(重点)
S
ˉ
0
π
r
2
(
1
−
R
)
=
4
π
r
2
σ
T
e
4
\bar S_0 \pi r^2(1-R)=4 \pi r^2 \sigma T_e^4
Sˉ0πr2(1−R)=4πr2σTe4
由这个公式算出来的有效温度为255k,高于全球平均温度288K
20.2 温室效应
大气对短波比较透明,而对长波不太透明,性质如同温室的玻璃一样,通常将大气这种使地球表面平衡温度升高的作用称作温室效应
20.3 地气辐射差额
地气辐射差额 = 地面吸收的太阳短波辐射 + 大气吸收的短波辐射 - 大气上界辐射出去的长波辐射
- 大气顶的净辐射=地气系统的净辐射
- 大气顶部的净辐射呈纬向分布,热带地区为正,高纬度地区为负,因此必然存在将低纬度地区多余的辐射能向高纬度地区输送的机制,大气和海洋运动就起到了重要作用
二十一、全球辐射平衡两层模式(重中之重)
分三块,不遗漏,不会乱
21.1 按各个部分贡献来区分
短波部分
将太阳给地球的能量平均之后为
S
0
/
4
S_0/4
S0/4,为入射值
入射能量
:
S
0
/
4
入射能量:S_0/4
入射能量:S0/4
经过大气对短波的吸收,以及地球的行星反射,剩下的部分会被地表吸收
地表吸收
=
(
1
−
R
−
A
s
)
S
0
4
地表吸收=(1-R-A_s)\frac{S_0}{4}
地表吸收=(1−R−As)4S0
行星反射掉的部分
R
S
0
4
\frac{RS_0}{4}
4RS0
涉及地表发射辐射的长波辐射
地表发射长波辐射
σ
T
g
4
\sigma T_g^4
σTg4
大气未吸收掉的,即从窗区发到宇宙的地表辐射
(
1
−
A
l
)
σ
T
g
4
(1-A_l)\sigma T_g^4
(1−Al)σTg4
涉及大气发射和吸收的长波辐射
大气向下和向上都发射辐射
A
l
σ
T
a
4
A_l \sigma T_a^4
AlσTa4
20.2 按照大气顶和地面来分
地面(两进一出)
接收到向下的短波辐射
(
1
−
R
−
A
s
)
S
0
4
(1-R-A_s)\frac{S_0}{4}
(1−R−As)4S0
接收大气逆辐射
A
l
σ
T
a
4
A_l \sigma T_a^4
AlσTa4
向上发出长波辐射
σ
T
g
4
\sigma T_g^4
σTg4
大气顶(一进三出)
太阳入射辐射
S
0
4
\frac{S_0}{4}
4S0
行星反射的太阳辐射
R
S
0
4
\frac{RS_0}{4}
4RS0
地面发射的长波辐射直接透过大气部分
(
1
−
A
l
)
σ
T
g
4
(1-A_l)\sigma T_g^4
(1−Al)σTg4
大气向宇宙空间发射部分
A
l
σ
T
a
4
A_l \sigma T_a^4
AlσTa4
二十二、地面辐射(重点)
22.1 地面净辐射通量密度
为净太阳短波辐射通量密度+净长波辐射通量密度
差额=净 = 收入-支出
有效=支出的长波-收入的长波
E 0 ∗ = E s , d o w n − E s , u p + E l , d o w n − E l , d o w n E_0^*=E_{s,down}-E_{s,up}+E_{l,down}-E_{l,down} E0∗=Es,down−Es,up+El,down−El,down
-
分别代表:净辐射通量密度,太阳向下辐射,反射的太阳辐射,大气向下的长波辐射,大气向上发射的长波辐射;也就是短波净辐射+长波净辐射
-
净短波辐射:入射辐射为太阳直接辐射和天空散射辐射,支出辐射为地面对短波辐射的反射
E s , 0 = ( 1 − R g ) E s , d o w n E_{s,0}=(1-R_g)E_{s,down} Es,0=(1−Rg)Es,down -
净长波辐射:入射辐射为大气逆辐射,支出辐射为地表发射的辐射和一部分反射的大气逆辐射
E l , 0 = E l , d o w n − [ ϵ σ T g 4 + ( 1 − ϵ ) E l , d o w n ] E_{l,0}=E_{l, down}-[\epsilon \sigma T_g^4+(1-\epsilon)E_{l,down}] El,0=El,down−[ϵσTg4+(1−ϵ)El,down]
其中 ( 1 − ϵ ) (1-\epsilon) (1−ϵ)为1-吸收率=反射率+散射率,就是将向下的长波辐射反射掉的部分 -
综上,地面的净辐射通量为
E 0 ∗ = ( 1 − R g ) E s , d o w n − E 0 E_0^*=(1-R_g)E_{s,down}-E_0 E0∗=(1−Rg)Es,down−E0
22.2 地面有效辐射
将地面向上的长波辐射和大气逆辐射之差
E 0 = [ ϵ σ T g 4 + ( 1 − ϵ ) E l , d o w n ] − E l , d o w n = ϵ ( σ T 4 − E l , d o w n ) E_{0}=[\epsilon \sigma T_g^4+(1-\epsilon)E_{l,down}]-E_{l, down}=\epsilon(\sigma T^4-E_{l,down}) E0=[ϵσTg4+(1−ϵ)El,down]−El,down=ϵ(σT4−El,down)
22.3 地面辐射差额
地面辐射差额 = 地面吸收的太阳辐射 - 地面有效辐射
E 0 ∗ = E s , d o w n ( 1 − R g ) − E 0 E_0^*=E_{s,down}(1-R_g)-E_0 E0∗=Es,down(1−Rg)−E0
- 夜间没有太阳,辐射差额为负;日间辐射差额为正
- 全球而言,辐射差额为正值,多出的部分以潜热和感热的形式传输给大气
- 一般而言,同一纬度海洋的净辐射通量密度大于陆地,沙漠由于反射率高会偏小
二十三、大气辐射
23.2 整层大气辐射差额
整层大气的辐射差额定义为:大气吸收的太阳辐射+地面有效辐射-大气向外太空的辐射
由于大气顶的总辐射收支为0,而地面的净辐射通量密度为正,说明大气在近地面净辐射通量为负
全球而言,大气的辐射差额为负,缺少的部分由地面的潜热和感热释放提供
二十四、总辐射平衡模型(重点)
- 太阳入射量记作100
- 地面吸收50
- 行星反照率(地表,大气,云反射回宇宙空间)30
- 云,大气吸收20
- 地表净辐射通量20,其中14被大气吸收,6通过窗区进入宇宙空间
- 感热通量6,潜热通量24
- 大气和云向外辐射64
地面热量交换三种热量排名:潜热24>辐射20>感热6
地气系统中能量排名:辐射>潜热>感热
注意问的是地面还是地气系统,能量排名不同的!
二十五、单层大气变温率(重点,课后题和18年真题都有,那题一定完整做一遍)
Δ
F
=
m
c
p
d
T
即辐射通量的变化
=
热量的变化(用比热来表示,热力学第一定律部分会说)
\Delta F = mc_p dT即辐射通量的变化=热量的变化(用比热来表示,热力学第一定律部分会说)
ΔF=mcpdT即辐射通量的变化=热量的变化(用比热来表示,热力学第一定律部分会说)
同时
m
=
ρ
V
=
ρ
Δ
z
(
考虑单位面积
)
同时m=\rho V=\rho \Delta z(考虑单位面积)
同时m=ρV=ρΔz(考虑单位面积)
而辐射强度的改变其实就是辐射通量对时间取微分
Δ
E
=
∂
F
∂
t
=
ρ
Δ
z
c
p
∂
T
∂
t
而辐射强度的改变其实就是辐射通量对时间取微分 \Delta E = \frac{\partial F}{\partial t}=\rho \Delta z c_p\frac{\partial T}{\partial t}
而辐射强度的改变其实就是辐射通量对时间取微分ΔE=∂t∂F=ρΔzcp∂t∂T
这样
∂
T
∂
t
就出现了变温率,移项后得到
∂
T
∂
t
=
Δ
E
Δ
Z
1
ρ
c
p
,若觉得
ρ
不方便,用状态方程变换即可
这样\frac{\partial T}{\partial t}就出现了变温率,移项后得到\frac{\partial T}{\partial t} = \frac{\Delta E}{\Delta Z}\frac{1}{\rho c_p},若觉得\rho不方便,用状态方程变换即可
这样∂t∂T就出现了变温率,移项后得到∂t∂T=ΔZΔEρcp1,若觉得ρ不方便,用状态方程变换即可
二十六、长法测量
用线性拟合得到太阳常数
由大气质量数,可以用垂直路径长度表示实际路径
m
=
s
e
c
θ
,
d
l
=
m
d
z
(
就是乘了个三角函数)
m=sec\theta,dl=mdz(就是乘了个三角函数)
m=secθ,dl=mdz(就是乘了个三角函数)
这样比尔定律可以表示为
E
=
E
0
e
−
∫
β
d
l
=
E
0
e
−
m
∫
β
d
z
=
E
0
e
−
m
δ
,这里的
δ
为垂直光学厚度
E=E_0 e^{-\int \beta dl}=E_0 e^{-m\int \beta dz}=E_0 e^{-m\delta},这里的\delta为垂直光学厚度
E=E0e−∫βdl=E0e−m∫βdz=E0e−mδ,这里的δ为垂直光学厚度
两边取对数之后得到
l
n
E
=
l
n
E
0
−
m
δ
lnE = lnE_0 - m\delta
lnE=lnE0−mδ
而E,m都是可以测量的,遮掩的话未知数就是
l
n
E
0
和
δ
lnE_0和\delta
lnE0和δ
可以看作y=Bx+A,进行线性拟合,得到太阳常数S以及垂直光学厚度