先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新Python全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Python知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip1024c (备注Python)
正文
3.3 Sklearn vs. 回归
3.4 回归应用
4 分类学习
4.1 输入输出
4.2 分类学习-评价
4.3 分类学习-评价标准
4.4 Sklearn vs. 分类
4.5 分类算法的应用
1 监督学习目标
利用一组 带有标签 的数据,学习从输入到输出的映射,然后将这种映射
关系应用到未知数据上,达到分类或回归的目的。
(1)分类:当输出是离散的,学习任务为分类任务。
(2)回归:当输出是连续的,学习任务为回归任务。
2 分类任务
3 回归分析
3.1 回归
回归:统计学分析数据的方法,目的在于了解两个或多个变数间是否相关、研究其相关方向与强度,并建立数学模型以便观察特定变数来预测研究者感兴趣的变数。回归分析可以帮助人们了解在自变量变化时因变量的变化量。一般来说,通过回归分析我们可以由给出的自变量估计因变量的条件期望。
3.2 回归的任务
3.3 Sklearn vs. 回归
Sklearn 提供的回归函数主要被封装在两个子模块中,分别是sklearn.linear_model和 sklearn.preprocessing 。
sklearn.linear_modlel 封装的是一些线性函数, 线性回归函数 包括有:
• 普通线性回归函数( LinearRegression )
• 岭回归( Ridge )
• Lasso ( Lasso )
非线性回归函数 ,如多项式回归( PolynomialFeatures )则通过
sklearn.preprocessing 子模块进行调用
3.4 回归应用
回归方法适合对一些带有时序信息的数据进行预测或者趋势拟合,常用在
金融及其他涉及时间序列分析的领域:
• 股票趋势预测
• 交通流量预测
4 分类学习
4.1 输入输出
输入:一组有标签的训练数据 ( 也称观察和评估 ) ,标签表明了这些数据(观察)的所署类别。
输出:分类模型根据这些训练数据,训练自己的模型参数,学习出一个适合这组数据的分类器,当有新数据(非训练数据)需要进行类别判断,就可以将这组新数据作为输入送给学好的分类器进行判断。
4.2 分类学习-评价
• 训练集(training set ): 顾名思义用来训练模型的已标注数据,用来建立模型,发现规律。
• 测试集(testing set): 也是已标注数据,通常做法是将标注隐藏,输送给训练好的模型,通过结果与真实标注进行对比,评估模型的学习能力。
训练集/测试集的划分方法: 根据已有标注数据,随机选出一部分数据(70% )数据作为训练数据,余下的作为测试数据,此外还有交叉验证法,自助法用来评估分类模型。
4.3 分类学习-评价标准
文末有福利领取哦~
👉一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
👉二、Python必备开发工具
👉三、Python视频合集
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉 四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(文末领读者福利)
👉五、Python练习题
检查学习结果。
👉六、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
👉因篇幅有限,仅展示部分资料,这份完整版的Python全套学习资料已经上传
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
[外链图片转存中…(img-Ya2w8Pxw-1713450227921)]
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!