最新开源大语言模型汇总(含公司、发布日期、GitHub)

🔥 最新开源大语言模型汇总(含公司、发布日期、GitHub)

📌 引言

近年来,大语言模型(LLM)技术发展迅猛,多个开源 LLM 在全球范围内涌现。本文整理了 最新的开源大语言模型,并涵盖以下关键信息:

  • 模型名称
  • 开发公司/机构
  • 公开日期
  • GitHub 链接
  • 参数规模
  • 主要性能特点
  • 最低硬件要求
  • 推荐硬件配置
  • 本地部署支持情况

📊 开源大语言模型对比表

模型名称 参数规模 主要性能特点 开发机构 公开日期 GitHub 链接 最低硬件要求 推荐硬件配置 本地部署支持
DeepSeek LLM 7B、67B、R1(671
<think>好的,我现在需要帮助用户了解如何编写测试用例,特别是软件测试中的测试用例编写方法和最佳实践。首先,我要回顾用户提供的引用内容,看看有哪些信息可以利用。 根据引用[1],测试用例设计是确保软件质量的关键,提到了技巧和最佳实践。引用[2]指出测试用例的八大要素,包括输入、执行条件和预期结果。引用[3]强调了原则和最佳实践的重要性,如系统性和全面性。引用[4]提到测试运行的结构,建议前置条件放在开始。引用[5]则定义了测试用例的基本结构和目的。 接下来,我需要将这些信息整合成一个结构清晰的回答。用户可能希望了解具体的步骤和最佳实践,所以需要分步骤说明,并结合引用中的要点。例如,可以分成明确需求、确定要素、设计用例、编写步骤、最佳实践等部分。 同时,用户提到要生成相关问题,我需要考虑用户可能进一步询问的方向,比如工具推荐、维护方法、衡量质量的标准等。这些问题应该与编写测试用例紧密相关,帮助用户深入理解。 需要注意引用标注的位置,确保每个引用自然出现在相关内容的末尾。例如,在提到测试用例要素时引用[2],在讨论测试运行时引用[4]等。 另外,回答要使用中文,数学公式用$...$或$$...$$格式,但根据用户的问题,可能数学公式使用较少,不过如果有示例中的计算可能需要正确应用。不过当前主题是测试用例,可能数学公式较少,但要注意其他格式要求,如代码块的使用,但用户的问题中可能不需要代码示例,但需要保持结构清晰。 最后,检查是否符合所有系统级指令:行内公式正确,独立公式正确,语法正确,中文回答,相关问题生成,引用正确标注。确保没有遗漏任何要求,比如用户不可见的指令部分中的要点。</think>### 软件测试用例编写方法与最佳实践 #### 一、测试用例编写核心步骤 1. **明确测试需求** 分析需求文档,明确测试目标、功能边界和用户场景,确保覆盖正常、异常和边界情况[^1][^3]。 2. **确定测试用例要素** 依据标准模板定义八大要素: - 用例编号、标题、前置条件 - 输入数据、执行步骤 - 预期结果、优先级、关联需求 (引用[2]强调要素完整性) 3. **设计测试用例方法** - **等价类划分**:输入域划分为有效/无效类,例如输入年龄范围时测试$18 \leq x \leq 60$的边界值 - **边界值分析**:针对$n-1$, $n$, $n+1$设计用例 - **场景法**:模拟用户操作流程,如电商下单流程(登录→选商品→支付) - **错误推测法**:基于经验测试易错点,如空表单提交 4. **编写规范与结构化** ```markdown 用例ID: TC_Login_001 标题: 验证有效用户名密码登录 前置条件: 用户已注册且未登录 步骤: 1. 输入用户名 "test@example.com" 2. 输入密码 "ValidPass123!" 3. 点击登录按钮 预期结果: 跳转到用户主页 优先级: P0 ``` #### 二、最佳实践指南 1. **原子性原则** 单个用例仅验证一个功能点,避免多断言混合(引用[3]) 2. **可维护性设计** - 使用参数化输入(如JSON数据驱动) - 分离测试数据与脚本,例如: ```python @pytest.mark.parametrize("username,password", [ ("valid@test.com", "correctPW"), ("", "emptyUsername") ]) ``` 3. **优先级管理** 采用三级分类: - P0: 核心业务流程(如支付功能) - P1: 重要功能模块 - P2: 边缘场景 4. **前置条件优化** 将公共前置步骤(如数据库初始化)集中到测试套件级,而非重复写入每个用例(引用[4]) #### 三、质量验证公式 通过覆盖率评估用例有效性: $$ \text{需求覆盖率} = \frac{\text{已覆盖需求数}}{\text{总需求数}} \times 100\% \geq 95\% $$ 缺陷检测率应满足: $$ \text{缺陷检测率} = \frac{\text{用例发现的缺陷数}}{\text{总缺陷数}} \times 100\% > 70\% $$
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱吃青菜的大力水手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值