1 简介
预测模型参数的选取对其泛化能力和预测准确度,起着至关重要作用.基于径向基核函数的最小二乘支持向量机参数主要涉及惩罚因子和核函数参数,这两个参数的选择将直接影响最小二乘支持向量机的学习和泛化能力.为了提高最小二乘支持向量机的预测结果,文章用麻雀优化算法对其参数寻优,建立数据分类模型.通过实验证明了该模型,对数据分类表现出很好的效果.
2 部分代码
%_________________________________________________________________________%
% 麻雀优化算法 %
%_________________________________________________________________________%
function [Best_pos,Best_score,curve]=SSA(pop,Max_iter,lb,ub,dim,fobj)
ST = 0.6;%预警值
PD = 0.7;%发现者的比列,剩下的是加入者
SD = 0.1;%意识到有危险麻雀的比重
PDNumber = round(pop*PD); %发现者数量
SDNumber = round(pop*SD);%意识到有危险麻雀数量
if(max(size(ub)) == 1)
ub = ub.*ones(1,dim);
lb = lb.*ones(1,dim);
end
%种群初始化
X0=initialization(pop,dim,ub,lb);
X = X0;
%计算初始适应度值
fitness = zeros(1,pop);
for i = 1:pop
fitness(i) = fobj(X(i,:));
end
[fitness, index]= sort(fitness);%排序
BestF = fitness(1);
WorstF = fitness(end);
GBestF = fitness(1);%全局最优适应度值
for i = 1:pop
X(i,:) = X0(index(i),:);
end
curve=zeros(1,Max_iter);
GBestX = X(1,:);%全局最优位置
X_new = X;
for i = 1: Max_iter
BestF = fitness(1);
WorstF = fitness(end);
R2 = rand(1);
for j = 1:PDNumber
if(R2<ST)
X_new(j,:) = X(j,:).*exp(-j/(rand(1)*Max_iter));
else
X_new(j,:) = X(j,:) + randn()*ones(1,dim);
end
end
for j = PDNumber+1:pop
% if(j>(pop/2))
if(j>(pop - PDNumber)/2 + PDNumber)
X_new(j,:)= randn().*exp((X(end,:) - X(j,:))/j^2);
else
%产生-1,1的随机数
A = ones(1,dim);
for a = 1:dim
if(rand()>0.5)
A(a) = -1;
end
end
AA = A'*inv(A*A');
X_new(j,:)= X(1,:) + abs(X(j,:) - X(1,:)).*AA';
end
end
Temp = randperm(pop);
SDchooseIndex = Temp(1:SDNumber);
for j = 1:SDNumber
if(fitness(SDchooseIndex(j))>BestF)
X_new(SDchooseIndex(j),:) = X(1,:) + randn().*abs(X(SDchooseIndex(j),:) - X(1,:));
elseif(fitness(SDchooseIndex(j))== BestF)
K = 2*rand() -1;
X_new(SDchooseIndex(j),:) = X(SDchooseIndex(j),:) + K.*(abs( X(SDchooseIndex(j),:) - X(end,:))./(fitness(SDchooseIndex(j)) - fitness(end) + 10^-8));
end
end
%边界控制
for j = 1:pop
for a = 1: dim
if(X_new(j,a)>ub(a))
X_new(j,a) =ub(a);
end
if(X_new(j,a)<lb(a))
X_new(j,a) =lb(a);
end
end
end
%更新位置
for j=1:pop
fitness_new(j) = fobj(X_new(j,:));
end
for j = 1:pop
if(fitness_new(j) < GBestF)
GBestF = fitness_new(j);
GBestX = X_new(j,:);
end
end
X = X_new;
fitness = fitness_new;
%排序更新
[fitness, index]= sort(fitness);%排序
BestF = fitness(1);
WorstF = fitness(end);
for j = 1:pop
X(j,:) = X(index(j),:);
end
curve(i) = GBestF;
end
Best_pos =GBestX;
Best_score = curve(end);
end
3 仿真结果
4 参考文献
[1]陈鑫等. "基于改进麻雀搜索算法与支持向量机的光纤陀螺故障诊断." 空军工程大学学报:自然科学版 22.3(2021):8.