基于A星和Dijkstra算法的机器人路径规划附Matlab实现

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

随着人工智能和机器人技术的不断发展,机器人在各个领域的应用越来越广泛。而机器人路径规划算法则是机器人导航和运动的关键技术之一。在实际应用中,A星算法和Dijkstra算法是两种常用的路径规划算法。本文将介绍基于A星和Dijkstra算法的机器人路径规划算法流程。

A星算法是一种启发式搜索算法,常用于图形学、游戏开发和机器人路径规划等领域。其基本思想是通过启发式函数来评估每个节点的代价,并选择最优的路径。A星算法的流程如下:

  1. 初始化起点和终点,并将起点加入开放列表。

  2. 从开放列表中选择代价最小的节点作为当前节点,将其加入关闭列表。

  3. 对当前节点的相邻节点进行遍历,计算它们的代价,并更新它们的父节点和代价。

  4. 将相邻节点加入开放列表,并重复步骤2和3,直到找到终点或者开放列表为空。

A星算法的优点是能够快速找到最优路径,并且适用于复杂的环境。但是它也存在一些缺点,比如在处理大规模地图时会消耗大量的计算资源。

另一种常用的路径规划算法是Dijkstra算法,它是一种无向图的最短路径算法。Dijkstra算法的基本思想是通过不断更新起点到各个节点的最短路径,直到找到终点。其流程如下:

  1. 初始化起点和终点,并将起点加入待访问列表。

  2. 选择待访问列表中距离起点最近的节点,并将其标记为已访问。

  3. 更新与当前节点相邻的节点的距离,并将它们加入待访问列表。

  4. 重复步骤2和3,直到找到终点或者待访问列表为空。

Dijkstra算法的优点是能够找到最短路径,而且不受启发式函数的影响。但是它也存在一些缺点,比如在处理大规模地图时会消耗大量的内存。

基于A星和Dijkstra算法的机器人路径规划算法流程可以根据实际需求选择合适的算法。在实际应用中,我们可以根据地图的复杂程度和计算资源的限制来选择合适的算法,以实现高效的路径规划。希望本文能够帮助读者更好地理解机器人路径规划算法的流程和特点。

📣 部分代码

clearclose all clc%% 1.初始设置map_range = struct('x_range',20,'y_range',20);  % 1-20obstacles = CreateObstacles(20);goal = [20,20];start = [1,1];OPEN = zeros(map_range.x_range,map_range.y_range);  % 若在OPEN中则为1CLOSED = zeros(map_range.x_range,map_range.y_range);  % 若在CLOSED中则为1PARENT = cell(map_range.x_range,map_range.y_range);  % 储存坐标(x,y)g = Inf(map_range.x_range,map_range.y_range);prior = Inf(map_range.x_range,map_range.y_range);  % 广度优先,即优先搜索OPEN中存在时间最长的节点,新节点的prior设置为最大p = 0;% % 绘图% plot(obstacles(:,1),obstacles(:,2),'k*',start(1),start(2),'g*',goal(1),goal(2),'r*'); hold on;% grid on;fig = figure('Name','bfs');% 设置颜色图cmap = [1 1 1; ...% 1 - white - clear cell          0 0 0; ...% 2 - black - obstacle        1 0 0; ...% 3 - red = visited         0 0 1; ...% 4 - blue - on list         0 1 0; ...% 5 - green - start         1 1 0; ...% 6 - yellow - goal        1 0 1];   % 7 - pink - path  colormap(cmap);    end%     % 绘图%     [row_CLOSED,col_CLOSED] = find(CLOSED==1);%     [row_OPEN,col_OPEN] = find(OPEN==1);%     plot(row_OPEN',col_OPEN','bh'); hold on;%     plot(row_CLOSED',col_CLOSED','mh'); hold on;%     drawnow;%     pause(0.5);    [row_CLOSED,col_CLOSED] = find(CLOSED==1);    for i = 1:length(row_CLOSED)        map(row_CLOSED(i),col_CLOSED(i)) = 3;    end    [row_OPEN,col_OPEN] = find(OPEN==1);    for i = 1:length(row_OPEN)        map(row_OPEN(i),col_OPEN(i)) = 4;    end    map(start(1),start(2)) = 5;    map(goal(1),goal(2)) = 6;    image(map);    set(gca,'YDir','normal');    drawnow;%     pause(0.5);    frame = getframe(fig);     im{idx}=frame2im(frame);    idx = idx + 1;end%% 3.提取路径path = extractPath(PARENT,start,goal);% plot(path(1,:),path(2,:),'b-'); hold on;for i = 1:length(path)    map(path(1,i),path(2,i)) = 7;endimage(map);set(gca,'YDir','normal');frame = getframe(fig); im{idx}=frame2im(frame);%% 4.制作giffilename = 'BreadthFirstSearching.gif'; % Specify the output file name 不区分大小写for idx = 1:length(im)    [A,map] = rgb2ind(im{idx},256);    if idx == 1        imwrite(A,map,filename,'gif','LoopCount',Inf,'DelayTime',0.1);    else        imwrite(A,map,filename,'gif','WriteMode','append','DelayTime',0.1);    endend

⛳️ 运行结果

🔗 参考文献

[1] 周宇杭,王文明,李泽彬,等.基于A星算法的移动机器人路径规划应用研究[J].电脑知识与技术:学术版, 2020, 16(13):4.DOI:CNKI:SUN:DNZS.0.2020-13-001.

[2] 张梦淇,叶宇林,张雨杰,等.一种基于A星惩罚控制优化算法的机器人路径规划方法.CN202211285517.0[2023-11-11].

[3] 潘成浩,中北大学经济与管理学院,山西 太原,潘成浩,等.基于松弛Dijkstra算法的移动机器人路径规划[J].计算机与现代化, 2016(11):5.DOI:10.3969/j.issn.1006-2475.2016.11.004.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值