【GRU回归预测】基于开普勒算法优化多头注意力机制卷积神经网络结合门控循环单元KOA-MultiAttention-CNN-GRU实现数据多维输入单输出预测附matlab实现

文章介绍了一种结合开普勒算法和门控循环单元的新型预测模型,通过优化多头注意力机制的卷积神经网络,提高了模型的鲁棒性和对时序数据的处理能力,实验结果表明其在多个数据集上表现优于传统模型。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

摘要

本文提出了一种基于开普勒算法优化多头注意力机制卷积神经网络结合门控循环单元(KOA-MultiAttention-CNN-GRU)的数据多维输入单输出预测模型。该模型将开普勒算法应用于多头注意力机制卷积神经网络,以提高模型的鲁棒性和泛化能力。同时,将门控循环单元引入模型,以增强模型对时序数据的学习能力。实验结果表明,该模型在多个数据集上取得了优异的预测性能,优于传统回归模型和深度学习模型。

1. 引言

数据预测是机器学习领域的一项重要任务,广泛应用于金融、医疗、交通等多个领域。传统的回归模型,如线性回归、决策树等,虽然简单易用,但往往难以捕捉数据中的复杂非线性关系。深度学习模型,如卷积神经网络、循环神经网络等,虽然能够学习复杂的数据关系,但往往需要大量的数据和计算资源。

为了解决上述问题,本文提出了一种基于开普勒算法优化多头注意力机制卷积神经网络结合门控循环单元(KOA-MultiAttention-CNN-GRU)的数据多维输入单输出预测模型。该模型将开普勒算法应用于多头注意力机制卷积神经网络,以提高模型的鲁棒性和泛化能力。同时,将门控循环单元引入模型,以增强模型对时序数据的学习能力。

2. 模型结构

该模型的结构如图1所示。

模型主要由以下几个部分组成:

  • 开普勒算法优化多头注意力机制卷积神经网络:该部分主要负责提取数据中的特征。开普勒算法是一种启发式算法,能够快速找到问题的最优解。将开普勒算法应用于多头注意力机制卷积神经网络,可以提高模型的鲁棒性和泛化能力。

  • 门控循环单元:该部分主要负责学习时序数据的变化规律。门控循环单元是一种循环神经网络,能够有效地处理时序数据。将门控循环单元引入模型,可以增强模型对时序数据的学习能力。

  • 全连接层:该部分主要负责将提取的特征映射到输出空间。全连接层是一种简单的神经网络层,能够将输入数据映射到输出空间。

3. 模型训练

模型的训练过程如下:

  1. 将数据预处理成适合模型输入的格式。

  2. 将数据输入模型,并计算模型的输出。

  3. 计算模型的损失函数,并根据损失函数更新模型的参数。

  4. 重复步骤2和步骤3,直到模型的损失函数收敛。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test  = mapminmax('apply', P_test, ps_input);t_train = ind2vec(T_train);t_test  = ind2vec(T_test );

⛳️ 运行结果

4. 实验结果

为了评估模型的性能,我们在多个数据集上进行了实验。实验结果表明,该模型在多个数据集上取得了优异的预测性能,优于传统回归模型和深度学习模型。

5. 结论

本文提出了一种基于开普勒算法优化多头注意力机制卷积神经网络结合门控循环单元(KOA-MultiAttention-CNN-GRU)的数据多维输入单输出预测模型。该模型将开普勒算法应用于多头注意力机制卷积神经网络,以提高模型的鲁棒性和泛化能力。同时,将门控循环单元引入模型,以增强模型对时序数据的学习能力。实验结果表明,该模型在多个数据集上取得了优异的预测性能,优于传统回归模型和深度学习模型。

🔗 参考文献

[1] 申明尧,韩萌,杜诗语,et al.融合XGBoost和Multi-GRU的数据中心服务器能耗优化算法[J].计算机应用, 2022, 42(1):11.DOI:10.11772/j.issn.1001-9081.2021071291.

[2] 苏金库,桂智明.基于时空特征的短时出租车流量预测[J].计算机与现代化, 2023(5):32-38.

[3] 桂智明,李壮壮,郭黎敏.基于ACGRU模型的短时交通流预测[J].计算机工程与应用, 2020, 56(21):260-265.DOI:10.3778/j.issn.1002-8331.1911-0371.

[4] 于新国,周思远,王招平,等.基于1DCNN-TSA-GRU的传送带滚筒故障识别方法和系统.CN202211159859.8[2024-01-11].

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值