✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要
本文提出了一种基于开普勒算法优化多头注意力机制卷积神经网络结合门控循环单元(KOA-MultiAttention-CNN-GRU)的数据多维输入单输出预测模型。该模型将开普勒算法应用于多头注意力机制卷积神经网络,以提高模型的鲁棒性和泛化能力。同时,将门控循环单元引入模型,以增强模型对时序数据的学习能力。实验结果表明,该模型在多个数据集上取得了优异的预测性能,优于传统回归模型和深度学习模型。
1. 引言
数据预测是机器学习领域的一项重要任务,广泛应用于金融、医疗、交通等多个领域。传统的回归模型,如线性回归、决策树等,虽然简单易用,但往往难以捕捉数据中的复杂非线性关系。深度学习模型,如卷积神经网络、循环神经网络等,虽然能够学习复杂的数据关系,但往往需要大量的数据和计算资源。
为了解决上述问题,本文提出了一种基于开普勒算法优化多头注意力机制卷积神经网络结合门控循环单元(KOA-MultiAttention-CNN-GRU)的数据多维输入单输出预测模型。该模型将开普勒算法应用于多头注意力机制卷积神经网络,以提高模型的鲁棒性和泛化能力。同时,将门控循环单元引入模型,以增强模型对时序数据的学习能力。
2. 模型结构
该模型的结构如图1所示。
模型主要由以下几个部分组成:
-
开普勒算法优化多头注意力机制卷积神经网络:该部分主要负责提取数据中的特征。开普勒算法是一种启发式算法,能够快速找到问题的最优解。将开普勒算法应用于多头注意力机制卷积神经网络,可以提高模型的鲁棒性和泛化能力。
-
门控循环单元:该部分主要负责学习时序数据的变化规律。门控循环单元是一种循环神经网络,能够有效地处理时序数据。将门控循环单元引入模型,可以增强模型对时序数据的学习能力。
-
全连接层:该部分主要负责将提取的特征映射到输出空间。全连接层是一种简单的神经网络层,能够将输入数据映射到输出空间。
3. 模型训练
模型的训练过程如下:
-
将数据预处理成适合模型输入的格式。
-
将数据输入模型,并计算模型的输出。
-
计算模型的损失函数,并根据损失函数更新模型的参数。
-
重复步骤2和步骤3,直到模型的损失函数收敛。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
4. 实验结果
为了评估模型的性能,我们在多个数据集上进行了实验。实验结果表明,该模型在多个数据集上取得了优异的预测性能,优于传统回归模型和深度学习模型。
5. 结论
本文提出了一种基于开普勒算法优化多头注意力机制卷积神经网络结合门控循环单元(KOA-MultiAttention-CNN-GRU)的数据多维输入单输出预测模型。该模型将开普勒算法应用于多头注意力机制卷积神经网络,以提高模型的鲁棒性和泛化能力。同时,将门控循环单元引入模型,以增强模型对时序数据的学习能力。实验结果表明,该模型在多个数据集上取得了优异的预测性能,优于传统回归模型和深度学习模型。
🔗 参考文献
[1] 申明尧,韩萌,杜诗语,et al.融合XGBoost和Multi-GRU的数据中心服务器能耗优化算法[J].计算机应用, 2022, 42(1):11.DOI:10.11772/j.issn.1001-9081.2021071291.
[2] 苏金库,桂智明.基于时空特征的短时出租车流量预测[J].计算机与现代化, 2023(5):32-38.
[3] 桂智明,李壮壮,郭黎敏.基于ACGRU模型的短时交通流预测[J].计算机工程与应用, 2020, 56(21):260-265.DOI:10.3778/j.issn.1002-8331.1911-0371.
[4] 于新国,周思远,王招平,等.基于1DCNN-TSA-GRU的传送带滚筒故障识别方法和系统.CN202211159859.8[2024-01-11].