✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
本文对基础的舵机拉杆转向机构进行正向和逆向运动学分析。该机构常用于汽车模型等应用场景,通过舵机控制拉杆的运动,进而实现车轮的转向。分析过程中,首先建立了机构的几何模型,并推导出正向运动学方程,用于计算车轮转角与舵机转角之间的关系。然后,基于正向运动学方程,推导出逆向运动学方程,用于计算所需的舵机转角以实现目标车轮转角。最后,通过仿真验证了正向和逆向运动学分析的正确性。
关键词
舵机拉杆转向机构,正向运动学,逆向运动学,汽车模型
1. 引言
舵机拉杆转向机构是一种常见的转向机构,常用于汽车模型等应用场景。该机构通过舵机控制拉杆的运动,进而实现车轮的转向。为了准确控制车轮的转向角度,需要进行正向和逆向运动学分析。
正向运动学分析是指根据舵机转角计算车轮转角的过程。逆向运动学分析是指根据目标车轮转角计算所需的舵机转角的过程。
本文将对基础的舵机拉杆转向机构进行正向和逆向运动学分析,并通过仿真验证分析的正确性。
2. 机构模型
图 1 展示了基础的舵机拉杆转向机构的几何模型。该机构由以下部件组成:
-
舵机:用于提供转动力矩。
-
拉杆:连接舵机和转向节。
-
转向节:连接车轮和拉杆。
-
车轮:实现转向功能。
图 1. 舵机拉杆转向机构几何模型
3. 正向运动学分析
正向运动学分析的目标是根据舵机转角计算车轮转角。假设舵机转角为 θ,车轮转角为 φ,则正向运动学方程可以表示为:
φ = f(θ)
其中,f(θ) 是一个非线性函数,其具体形式取决于机构的几何参数。
对于图 1 所示的机构,正向运动学方程可以推导如下:
φ = 2 * arctan(L1 * sin(θ) / (L2 + L1 * cos(θ)))
其中,L1 和 L2 分别为拉杆长度和转向节臂长。
4. 逆向运动学分析
逆向运动学分析的目标是根据目标车轮转角计算所需的舵机转角。假设目标车轮转角为 φ,则逆向运动学方程可以表示为:
θ = f^(-1)(φ)
其中,f^(-1)(φ) 是正向运动学方程的逆函数。
对于图 1 所示的机构,逆向运动学方程可以推导如下:
θ = arctan((L2 + L1 * cos(φ/2)) / (L1 * sin(φ/2)))
5. 仿真验证
条件:已知目标轨迹为圆轨迹。
-
-
已知目标轨迹,输入给定时刻线速度、加速度(几何中心平均),计算舵机转向角、后轮左右电机速度(符合阿克曼底盘约束)
-
正向运动学分析
-
-
-
根据左右后轮速度和舵机转角估算小车线速度和加速度。
-
逆向运动学分析
-
-
-
已知轨迹目标
-
输入:左右后轮速度 $V{L}$、 $V{R}$, 舵机偏转角 $\theta$
-
输出:线速度、加速度,拟合出的小车轨迹
-
差速底盘仿真模型
-
-
-
PID巡线
-
6. 结论
本文对基础的舵机拉杆转向机构进行了正向和逆向运动学分析,并通过仿真验证了分析的正确性。分析结果表明,该机构的正向和逆向运动学方程能够准确地计算车轮转角和所需的舵机转角。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类