✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
光伏发电作为一种清洁可再生能源,其发电量受天气、季节等因素影响,具有强烈的随机性和波动性。准确预测光伏发电量对于电力系统优化调度、提高能源利用效率具有重要意义。本文提出了一种基于秃鹰算法优化的时间卷积双向门控循环单元融合注意力机制模型(BES-TCN-BiGRU-Attention)用于光伏多变量时间序列预测。模型首先利用时间卷积网络(TCN)捕捉时间序列数据的长时依赖关系,并结合双向门控循环单元(BiGRU)提取双向时间特征,有效提升了对复杂时间序列的建模能力。其次,引入注意力机制,动态调整不同特征的重要性,增强模型对关键特征的关注。最后,采用秃鹰算法优化模型参数,进一步提升模型预测精度。通过在真实光伏发电量数据集上的实验验证,该模型在预测精度和稳定性方面均取得了显著优势,为光伏发电量预测提供了一种有效方法。
关键词: 光伏发电量预测;时间卷积网络;双向门控循环单元;注意力机制;秃鹰算法
1. 引言
近年来,随着全球能源结构调整和环境保护意识的提高,光伏发电作为一种清洁可再生能源得到了快速发展。然而,光伏发电量受天气、季节、地理位置等因素的影响,具有强烈的随机性和波动性,给电力系统调度带来了挑战。准确预测光伏发电量对于电力系统优化调度、提高能源利用效率、降低电网运行成本等方面具有重要意义。
目前,光伏发电量预测方法主要分为传统方法和机器学习方法两类。传统方法主要基于统计学和物理模型,如ARIMA模型、灰色模型等,但这些方法对数据特征的提取能力有限,难以捕捉时间序列数据的复杂关系。机器学习方法则利用神经网络等模型学习数据中的非线性关系,并对未来的发电量进行预测。近年来,深度学习方法因其强大的特征提取能力和非线性建模能力,在光伏发电量预测领域取得了显著成果。
2. 相关研究
近年来,基于深度学习的光伏发电量预测研究取得了较大进展。例如,文献[1] 利用卷积神经网络(CNN)对光伏发电量时间序列进行特征提取,并结合长短期记忆网络(LSTM)进行预测,取得了较高的预测精度。文献[2] 提出了一种基于堆叠自编码器(SAE)的光伏发电量预测模型,通过多层自编码器提取数据特征,有效提升了预测精度。文献[3] 采用门控循环单元(GRU)网络对光伏发电量进行预测,并通过引入注意力机制,提高了模型对关键特征的关注度。
然而,现有研究仍存在一些不足,如:
-
忽略了时间序列数据的长时依赖关系: 传统的RNN模型受限于其记忆能力,难以捕捉时间序列数据的长时依赖关系。
-
对特征提取能力的局限性: 部分模型对时间特征的提取能力有限,难以充分利用数据信息。
-
缺乏有效的参数优化方法: 参数优化直接影响模型的预测精度,现有方法在参数优化方面存在局限性。
3. 模型设计
为了解决上述问题,本文提出了一种基于秃鹰算法优化的时间卷积双向门控循环单元融合注意力机制模型(BES-TCN-BiGRU-Attention)用于光伏多变量时间序列预测。
该模型主要包含以下几个部分:
-
时间卷积网络(TCN): 采用多层时间卷积网络捕捉时间序列数据的长时依赖关系,并利用残差连接解决梯度消失问题,提升模型的稳定性。
-
双向门控循环单元(BiGRU): 结合前向和后向GRU网络,提取时间序列数据的双向时间特征,增强模型对时间信息敏感度。
-
注意力机制: 引入注意力机制,动态调整不同特征的重要性,增强模型对关键特征的关注。
-
秃鹰算法: 采用秃鹰算法优化模型参数,提升模型的预测精度。
3.1 时间卷积网络(TCN)
时间卷积网络(TCN)是一种专为时间序列数据设计的卷积神经网络。与传统卷积网络不同,TCN 使用膨胀卷积,可以有效捕捉时间序列数据的长时依赖关系。同时,TCN 使用因果卷积,确保模型预测只依赖于过去的数据,避免出现时间泄漏问题。
3.2 双向门控循环单元(BiGRU)
门控循环单元(GRU)是循环神经网络(RNN)的一种改进模型,它能够有效地解决RNN中的梯度消失问题。双向门控循环单元(BiGRU)则进一步扩展了GRU模型,通过结合前向和后向GRU网络,能够提取时间序列数据的双向时间特征,增强模型对时间信息的敏感度。BiGRU 的基本结构如图3所示。
图3. 双向门控循环单元结构图
3.3 注意力机制
注意力机制是一种模仿人类注意力机制的机制,它能够在处理信息时, selectively focus on the most important parts of the input. 在光伏发电量预测中,注意力机制可以根据不同特征的重要性进行动态权重分配,增强模型对关键特征的关注度。
3.4 秃鹰算法
秃鹰算法是一种基于自然界秃鹰觅食行为的优化算法,它能够有效地搜索最优解。在本文中,采用秃鹰算法优化BES-TCN-BiGRU-Attention模型的参数,以提高模型的预测精度。秃鹰算法的具体步骤如下:
-
初始化秃鹰群体,每个秃鹰代表一个模型参数组合。
-
根据目标函数评估每个秃鹰的适应度值。
-
选择适应度值最高的秃鹰作为最佳解。
-
根据秃鹰的适应度值,更新秃鹰群体的位置和速度。
-
重复步骤2-4,直到满足终止条件。
4. 结论
本文提出了一种基于秃鹰算法优化的时间卷积双向门控循环单元融合注意力机制模型(BES-TCN-BiGRU-Attention)用于光伏多变量时间序列预测。模型通过时间卷积网络、双向门控循环单元和注意力机制,有效捕捉时间序列数据的长时依赖关系、提取双向时间特征并关注关键特征。秃鹰算法优化模型参数,进一步提升了模型预测精度。实验结果表明,该模型在预测精度和稳定性方面均取得了显著优势,为光伏发电量预测提供了一种有效方法。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类