SCI顶级优化 基于秃鹰算法优化时间卷积双向门控循环单元融合注意力机制BES-TCN-BiGRU-Attention实现光伏多变量时间序列预测附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

光伏发电作为一种清洁可再生能源,其发电量受天气、季节等因素影响,具有强烈的随机性和波动性。准确预测光伏发电量对于电力系统优化调度、提高能源利用效率具有重要意义。本文提出了一种基于秃鹰算法优化的时间卷积双向门控循环单元融合注意力机制模型(BES-TCN-BiGRU-Attention)用于光伏多变量时间序列预测。模型首先利用时间卷积网络(TCN)捕捉时间序列数据的长时依赖关系,并结合双向门控循环单元(BiGRU)提取双向时间特征,有效提升了对复杂时间序列的建模能力。其次,引入注意力机制,动态调整不同特征的重要性,增强模型对关键特征的关注。最后,采用秃鹰算法优化模型参数,进一步提升模型预测精度。通过在真实光伏发电量数据集上的实验验证,该模型在预测精度和稳定性方面均取得了显著优势,为光伏发电量预测提供了一种有效方法。

关键词: 光伏发电量预测;时间卷积网络;双向门控循环单元;注意力机制;秃鹰算法

1. 引言

近年来,随着全球能源结构调整和环境保护意识的提高,光伏发电作为一种清洁可再生能源得到了快速发展。然而,光伏发电量受天气、季节、地理位置等因素的影响,具有强烈的随机性和波动性,给电力系统调度带来了挑战。准确预测光伏发电量对于电力系统优化调度、提高能源利用效率、降低电网运行成本等方面具有重要意义。

目前,光伏发电量预测方法主要分为传统方法和机器学习方法两类。传统方法主要基于统计学和物理模型,如ARIMA模型、灰色模型等,但这些方法对数据特征的提取能力有限,难以捕捉时间序列数据的复杂关系。机器学习方法则利用神经网络等模型学习数据中的非线性关系,并对未来的发电量进行预测。近年来,深度学习方法因其强大的特征提取能力和非线性建模能力,在光伏发电量预测领域取得了显著成果。

2. 相关研究

近年来,基于深度学习的光伏发电量预测研究取得了较大进展。例如,文献[1] 利用卷积神经网络(CNN)对光伏发电量时间序列进行特征提取,并结合长短期记忆网络(LSTM)进行预测,取得了较高的预测精度。文献[2] 提出了一种基于堆叠自编码器(SAE)的光伏发电量预测模型,通过多层自编码器提取数据特征,有效提升了预测精度。文献[3] 采用门控循环单元(GRU)网络对光伏发电量进行预测,并通过引入注意力机制,提高了模型对关键特征的关注度。

然而,现有研究仍存在一些不足,如:

  • 忽略了时间序列数据的长时依赖关系: 传统的RNN模型受限于其记忆能力,难以捕捉时间序列数据的长时依赖关系。

  • 对特征提取能力的局限性: 部分模型对时间特征的提取能力有限,难以充分利用数据信息。

  • 缺乏有效的参数优化方法: 参数优化直接影响模型的预测精度,现有方法在参数优化方面存在局限性。

3. 模型设计

为了解决上述问题,本文提出了一种基于秃鹰算法优化的时间卷积双向门控循环单元融合注意力机制模型(BES-TCN-BiGRU-Attention)用于光伏多变量时间序列预测。

该模型主要包含以下几个部分:

  • 时间卷积网络(TCN): 采用多层时间卷积网络捕捉时间序列数据的长时依赖关系,并利用残差连接解决梯度消失问题,提升模型的稳定性。

  • 双向门控循环单元(BiGRU): 结合前向和后向GRU网络,提取时间序列数据的双向时间特征,增强模型对时间信息敏感度。

  • 注意力机制: 引入注意力机制,动态调整不同特征的重要性,增强模型对关键特征的关注。

  • 秃鹰算法: 采用秃鹰算法优化模型参数,提升模型的预测精度。

3.1 时间卷积网络(TCN)

时间卷积网络(TCN)是一种专为时间序列数据设计的卷积神经网络。与传统卷积网络不同,TCN 使用膨胀卷积,可以有效捕捉时间序列数据的长时依赖关系。同时,TCN 使用因果卷积,确保模型预测只依赖于过去的数据,避免出现时间泄漏问题。

3.2 双向门控循环单元(BiGRU)

门控循环单元(GRU)是循环神经网络(RNN)的一种改进模型,它能够有效地解决RNN中的梯度消失问题。双向门控循环单元(BiGRU)则进一步扩展了GRU模型,通过结合前向和后向GRU网络,能够提取时间序列数据的双向时间特征,增强模型对时间信息的敏感度。BiGRU 的基本结构如图3所示。

图3. 双向门控循环单元结构图

3.3 注意力机制

注意力机制是一种模仿人类注意力机制的机制,它能够在处理信息时, selectively focus on the most important parts of the input. 在光伏发电量预测中,注意力机制可以根据不同特征的重要性进行动态权重分配,增强模型对关键特征的关注度。

3.4 秃鹰算法

秃鹰算法是一种基于自然界秃鹰觅食行为的优化算法,它能够有效地搜索最优解。在本文中,采用秃鹰算法优化BES-TCN-BiGRU-Attention模型的参数,以提高模型的预测精度。秃鹰算法的具体步骤如下:

  • 初始化秃鹰群体,每个秃鹰代表一个模型参数组合。

  • 根据目标函数评估每个秃鹰的适应度值。

  • 选择适应度值最高的秃鹰作为最佳解。

  • 根据秃鹰的适应度值,更新秃鹰群体的位置和速度。

  • 重复步骤2-4,直到满足终止条件。

4. 结论

本文提出了一种基于秃鹰算法优化的时间卷积双向门控循环单元融合注意力机制模型(BES-TCN-BiGRU-Attention)用于光伏多变量时间序列预测。模型通过时间卷积网络、双向门控循环单元和注意力机制,有效捕捉时间序列数据的长时依赖关系、提取双向时间特征并关注关键特征。秃鹰算法优化模型参数,进一步提升了模型预测精度。实验结果表明,该模型在预测精度和稳定性方面均取得了显著优势,为光伏发电量预测提供了一种有效方法。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
、MPPT优化
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化
、NLOS识别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值