1 简介
针对基于传统BP神经网络的海水水质评价模型存在易陷入局部极小等问题,提出了一种新的利用头脑风暴优化算法(BSO)优化BP神经网络的海水水质评价模型(BSO-BP).该模型引入具有全局寻优特点的头脑风暴优化算法,用于模拟人类提出创造性思维解决问题的过程,具有强大的全局搜索和局部搜索的能力,同时利用BP神经网络所具有良好的非线性映射能力,学习适应能力和容错性,最大程度上考虑到海洋水质评价因素的非线性和非平稳的关系,得到BP神经网络的各层权值,阈值的最优解,使得海水水质评价结果准确合理.并以胶州湾海域的12个监测站位的监测数据作为评价样本进行水质评价,实验结果表明该评价模型能够克服局部极小问题,评价结果准确性较高,并具有一定的实用性.
受人类创造性解决问题过程--头脑风暴会议的启发, 2011年史玉回老师 在第二次群体智能国际会议(The Second International Conference on Swarm Intelligence(ICSI11))中提出一种新的群智能优化算法--头脑风暴优化算法,算法采用聚 类思想搜索局部最优,通过局部最优的比较得到全局最优;采用变异思想增加了算法的多 样性,避免算法陷入局部最优,在这聚与散相辅相承的过程中搜索最优解,思想新颖,适合于解决多峰高维函数问题。
2 部分代码
function best_fitness = bso2(fun,n_p,n_d,n_c,rang_l,rang_r,max_iteration)
% fun = fitness_function
% n_p; population size
% n_d; number of dimension
% n_c: number of clusters
% rang_l; left boundary of the dynamic range
% rang_r; right boundary of the dynamic range
prob_one_cluster = 0.8; % probability for select one cluster to form new individual;
stepSize = ones(1,n_d); % effecting the step size of generating new individuals by adding random values
popu = rang_l + (rang_r - rang_l) * rand(n_p,n_d); % initialize the population of individuals
popu_sorted = rang_l + (rang_r - rang_l) * rand(n_p,n_d); % initialize the population of individuals sorted according to clusters
n_iteration = 0; % current iteration number
% initialize cluster probability to be zeros
prob = zeros(n_c,1);
best = zeros(n_c,1); % index of best individual in each cluster
centers = rang_l + (rang_r - rang_l) * rand(n_c,n_d); % initialize best individual in each cluster
centers_copy = rang_l + (rang_r - rang_l) * rand(n_c,n_d); % initialize best individual-COPY in each cluster FOR the purpose of introduce random best
best_fitness = 1000000*ones(max_iteration,1);
fitness_popu = 1000000*ones(n_p,1); % store fitness value for each individual
fitness_popu_sorted = 1000000*ones(n_p,1); % store fitness value for each sorted individual
indi_temp = zeros(1,n_d); % store temperary individual
% calculate fitness for each individual in the initialized population
for idx = 1:n_p
fitness_popu(idx,1) = fun(popu(idx,:));
end
while n_iteration < max_iteration
cluster = kmeans(popu, n_c,'Distance','cityblock','Start',centers,'EmptyAction','singleton'); % k-mean cluster
% clustering
fit_values = 100000000000000000000000000.0*ones(n_c,1); % assign a initial big fitness value as best fitness for each cluster in minimization problems
number_in_cluster = zeros(n_c,1); % initialize 0 individual in each cluster
for idx = 1:n_p
number_in_cluster(cluster(idx,1),1)= number_in_cluster(cluster(idx,1),1) + 1;
% find the best individual in each cluster
if fit_values(cluster(idx,1),1) > fitness_popu(idx,1) % minimization
fit_values(cluster(idx,1),1) = fitness_popu(idx,1);
best(cluster(idx,1),1) = idx;
end
end
% form population sorted according to clusters
counter_cluster = zeros(n_c,1); % initialize cluster counter to be 0
acculate_num_cluster = zeros(n_c,1); % initialize accumulated number of individuals in previous clusters
for idx =2:n_c
acculate_num_cluster(idx,1) = acculate_num_cluster((idx-1),1) + number_in_cluster((idx-1),1);
end
%start form sorted population
for idx = 1:n_p
counter_cluster(cluster(idx,1),1) = counter_cluster(cluster(idx,1),1) + 1 ;
temIdx = acculate_num_cluster(cluster(idx,1),1) + counter_cluster(cluster(idx,1),1);
popu_sorted(temIdx,:) = popu(idx,:);
fitness_popu_sorted(temIdx,1) = fitness_popu(idx,1);
end
% record the best individual in each cluster
for idx = 1:n_c
centers(idx,:) = popu(best(idx,1),:);
end
if (rand() < 0.2) % select one cluster center to be replaced by a randomly generated center
cenIdx = ceil(rand()*n_c);
centers(cenIdx,:) = rang_l + (rang_r - rang_l) * rand(1,n_d);
end
% calculate cluster probabilities based on number of individuals in each cluster
for idx = 1:n_c
prob(idx,1) = number_in_cluster(idx,1)/n_p;
if idx > 1
prob(idx,1) = prob(idx,1) + prob(idx-1,1);
end
end
% generate n_p new individuals by adding Gaussian random values
for idx = 1:n_p
r_1 = rand(); % probability for select one cluster to form new individual
if r_1 < prob_one_cluster % select one cluster
r = rand();
for idj = 1:n_c
if r < prob(idj,1)
if rand() < 0.4 % use the center
indi_temp(1,:) = centers(idj,:);
else % use one randomly selected cluster
indi_1 = acculate_num_cluster(idj,1) + ceil(rand() * number_in_cluster(idj,1));
indi_temp(1,:) = popu_sorted(indi_1,:);
end
break
end
end
else % select two clusters
% pick two clusters
cluster_1 = ceil(rand() * n_c);
indi_1 = acculate_num_cluster(cluster_1,1) + ceil(rand() * number_in_cluster(cluster_1,1));
if indi_1==0
indi_1=1;
end
cluster_2 = ceil(rand() * n_c);
indi_2 = acculate_num_cluster(cluster_2,1) + ceil(rand() * number_in_cluster(cluster_2,1));
if indi_2==0
indi_2=1;
end
tem = rand();
if rand() < 0.5 %use center
indi_temp(1,:) = tem * centers(cluster_1,:) + (1-tem) * centers(cluster_2,:);
else % use randomly selected individuals from each cluster
indi_temp(1,:) = tem * popu_sorted(indi_1,:) + (1-tem) * popu_sorted(indi_2,:);
end
end
stepSize = logsig(((0.5*max_iteration - n_iteration)/20)) * rand(1,n_d);
indi_temp(1,:) = indi_temp(1,:) + stepSize .* normrnd(0,1,1,n_d);
% if better than the previous one, replace it
fv = fun(indi_temp);
if fv < fitness_popu(idx,1) % better than the previous one, replace
fitness_popu(idx,1) = fv;
popu(idx,:) = indi_temp(1,:);
end
end
% keep the best for each cluster
for idx = 1:n_c
popu(best(idx,1),:) = centers_copy(idx,:);
fitness_popu(best(idx,1),1) = fit_values(idx,1);
end
n_iteration = n_iteration +1;
% record the best fitness in each iteration
best_fitness(n_iteration, 1) = min(fit_values);
end
3 仿真结果
4 参考文献
[1]李海涛, 邵泽东. 基于头脑风暴优化算法与BP神经网络的海水水质评价模型研究[J]. 应用海洋学学报, 2020, 39(1):6.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。