1 简介

针对基于传统BP神经网络的海水水质评价模型存在易陷入局部极小等问题,提出了一种新的利用头脑风暴优化算法(BSO)优化BP神经网络的海水水质评价模型(BSO-BP).该模型引入具有全局寻优特点的头脑风暴优化算法,用于模拟人类提出创造性思维解决问题的过程,具有强大的全局搜索和局部搜索的能力,同时利用BP神经网络所具有良好的非线性映射能力,学习适应能力和容错性,最大程度上考虑到海洋水质评价因素的非线性和非平稳的关系,得到BP神经网络的各层权值,阈值的最优解,使得海水水质评价结果准确合理.并以胶州湾海域的12个监测站位的监测数据作为评价样本进行水质评价,实验结果表明该评价模型能够克服局部极小问题,评价结果准确性较高,并具有一定的实用性.

受人类创造性解决问题过程--头脑风暴会议的启发, 2011年史玉回老师 在第二次群体智能国际会议(The Second International Conference on Swarm Intelligence(ICSI11))中提出一种新的群智能优化算法--头脑风暴优化算法,算法采用聚 类思想搜索局部最优,通过局部最优的比较得到全局最优;采用变异思想增加了算法的多 样性,避免算法陷入局部最优,在这聚与散相辅相承的过程中搜索最优解,思想新颖,适合于解决多峰高维函数问题。

【BP预测】基于头脑风暴算法优化BP神经网络实现数据预测附matlab代码_搜索

【BP预测】基于头脑风暴算法优化BP神经网络实现数据预测附matlab代码_神经网络_02

2 部分代码

function best_fitness = bso2(fun,n_p,n_d,n_c,rang_l,rang_r,max_iteration)

% fun = fitness_function

% n_p; population size

% n_d; number of dimension

% n_c: number of clusters

% rang_l; left boundary of the dynamic range

% rang_r; right boundary of the dynamic range

prob_one_cluster = 0.8;                                    % probability for select one cluster to form new individual; 

stepSize = ones(1,n_d);                                    % effecting the step size of generating new individuals by adding random values

popu = rang_l + (rang_r - rang_l) * rand(n_p,n_d);         % initialize the population of individuals

popu_sorted  = rang_l + (rang_r - rang_l) * rand(n_p,n_d); % initialize the  population of individuals sorted according to clusters

n_iteration = 0;                                           % current iteration number

% initialize cluster probability to be zeros

prob = zeros(n_c,1);

best = zeros(n_c,1);                                       % index of best individual in each cluster

centers = rang_l + (rang_r - rang_l) * rand(n_c,n_d);      % initialize best individual in each cluster

centers_copy = rang_l + (rang_r - rang_l) * rand(n_c,n_d); % initialize best individual-COPY in each cluster FOR the purpose of introduce random best

best_fitness = 1000000*ones(max_iteration,1);

fitness_popu = 1000000*ones(n_p,1);                        % store fitness value for each individual

fitness_popu_sorted = 1000000*ones(n_p,1);                 % store  fitness value for each sorted individual

indi_temp = zeros(1,n_d);                                  % store temperary individual

% calculate fitness for each individual in the initialized population

for idx = 1:n_p

    fitness_popu(idx,1) = fun(popu(idx,:));

end

while n_iteration < max_iteration   

      cluster = kmeans(popu, n_c,'Distance','cityblock','Start',centers,'EmptyAction','singleton'); % k-mean cluster

      % clustering    

      fit_values = 100000000000000000000000000.0*ones(n_c,1);  % assign a initial big fitness value  as best fitness for each cluster in minimization problems

      number_in_cluster = zeros(n_c,1);                        % initialize 0 individual in each cluster

      for idx = 1:n_p

          number_in_cluster(cluster(idx,1),1)= number_in_cluster(cluster(idx,1),1) + 1;      

          % find the best individual in each cluster

          if fit_values(cluster(idx,1),1) > fitness_popu(idx,1)  % minimization

             fit_values(cluster(idx,1),1) = fitness_popu(idx,1);

             best(cluster(idx,1),1) = idx;

          end

      end  

      % form population sorted according to clusters

      counter_cluster = zeros(n_c,1);  % initialize cluster counter to be 0 

      acculate_num_cluster = zeros(n_c,1);  % initialize accumulated number of individuals in previous clusters

      for idx =2:n_c

          acculate_num_cluster(idx,1) = acculate_num_cluster((idx-1),1) + number_in_cluster((idx-1),1);

      end

      %start form sorted population

      for idx = 1:n_p

          counter_cluster(cluster(idx,1),1) = counter_cluster(cluster(idx,1),1) + 1 ;

          temIdx = acculate_num_cluster(cluster(idx,1),1) +  counter_cluster(cluster(idx,1),1);

          popu_sorted(temIdx,:) = popu(idx,:);

          fitness_popu_sorted(temIdx,1) = fitness_popu(idx,1);

      end  

      % record the best individual in each cluster

      for idx = 1:n_c

          centers(idx,:) = popu(best(idx,1),:);        

      end  

      if (rand() < 0.2) %  select one cluster center to be replaced by a randomly generated center

         cenIdx = ceil(rand()*n_c);

         centers(cenIdx,:) = rang_l + (rang_r - rang_l) * rand(1,n_d);

      end         

      % calculate cluster probabilities based on number of individuals in each cluster

      for idx = 1:n_c

          prob(idx,1) = number_in_cluster(idx,1)/n_p;

          if idx > 1

             prob(idx,1) = prob(idx,1) + prob(idx-1,1);

          end

      end

      % generate n_p new individuals by adding Gaussian random values           

      for idx = 1:n_p

          r_1 = rand();             % probability for select one cluster to form new individual

          if r_1 < prob_one_cluster  % select one cluster

             r = rand();

             for idj = 1:n_c

                 if r < prob(idj,1)                      

                    if rand() < 0.4  % use the center

                       indi_temp(1,:) = centers(idj,:); 

                    else             % use one randomly selected  cluster

                        indi_1 = acculate_num_cluster(idj,1) + ceil(rand() * number_in_cluster(idj,1));

                        indi_temp(1,:) = popu_sorted(indi_1,:);  

                    end

                    break

                end

             end

          else % select two clusters

               % pick two clusters 

               cluster_1 = ceil(rand() * n_c);

               indi_1 = acculate_num_cluster(cluster_1,1) + ceil(rand() * number_in_cluster(cluster_1,1));

               if indi_1==0

                   indi_1=1;

               end

               cluster_2 = ceil(rand() * n_c);

               indi_2 = acculate_num_cluster(cluster_2,1) + ceil(rand() * number_in_cluster(cluster_2,1)); 

               if indi_2==0

                   indi_2=1;

               end

               tem = rand();

               if rand() < 0.5 %use center

                  indi_temp(1,:) = tem * centers(cluster_1,:) + (1-tem) * centers(cluster_2,:); 

               else            % use randomly selected individuals from each cluster            

                  indi_temp(1,:) = tem * popu_sorted(indi_1,:) + (1-tem) * popu_sorted(indi_2,:); 

               end

          end          

          stepSize = logsig(((0.5*max_iteration - n_iteration)/20)) * rand(1,n_d);

          indi_temp(1,:) = indi_temp(1,:) + stepSize .* normrnd(0,1,1,n_d);

          % if better than the previous one, replace it

          fv = fun(indi_temp);

          if fv < fitness_popu(idx,1)  % better than the previous one, replace

             fitness_popu(idx,1) = fv;

             popu(idx,:) = indi_temp(1,:);

          end

      end

      % keep the best for each cluster

      for idx = 1:n_c

          popu(best(idx,1),:) = centers_copy(idx,:);  

          fitness_popu(best(idx,1),1) = fit_values(idx,1);

      end

      n_iteration = n_iteration +1;

      % record the best fitness in each iteration

      best_fitness(n_iteration, 1) = min(fit_values);

end

3 仿真结果

【BP预测】基于头脑风暴算法优化BP神经网络实现数据预测附matlab代码_搜索_03

【BP预测】基于头脑风暴算法优化BP神经网络实现数据预测附matlab代码_搜索_04

【BP预测】基于头脑风暴算法优化BP神经网络实现数据预测附matlab代码_搜索_05

4 参考文献

[1]李海涛, 邵泽东. 基于头脑风暴优化算法与BP神经网络的海水水质评价模型研究[J]. 应用海洋学学报, 2020, 39(1):6.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

【BP预测】基于头脑风暴算法优化BP神经网络实现数据预测附matlab代码_优化算法_06