✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
一、背景介绍
随着科技的发展,负荷数据的预测在电力、能源等领域的应用越来越广泛。传统的预测方法往往存在准确性不高、计算复杂度大等问题。为了解决这些问题,本文提出了一种基于雾凇优化算法RIME的BP时序预测方法,实现负荷数据预测单输入单输出,具有更高的预测准确性和较低的计算复杂度。
二、雾凇优化算法RIME简介
雾凇优化算法(Rime)是一种基于自然界雾凇现象的启发式优化算法。它具有全局搜索能力强、收敛速度快、鲁棒性强等优点。通过引入雾凇现象的模拟,使得算法能够在解空间中快速找到最优解,从而为负荷数据的预测提供了一种高效、准确的解决方案。
三、BP时序预测模型构建
1. 数据预处理:首先对负荷数据进行归一化处理,消除数据之间的量纲影响,提高模型的预测准确性。
2. 构建神经网络:采用多层前馈神经网络作为预测模型,输入层用于接收原始负荷数据,输出层用于输出预测结果。
3. 训练神经网络:使用雾凇优化算法RIME对神经网络的权重和偏置进行优化,使得网络能够更好地拟合负荷数据的变化规律。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类