【独家首发】Matlab实现白冠鸡优化算法COOT优化Transformer-BiLSTM实现负荷数据回归预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

摘要:随着电力系统日益复杂化,负荷预测对于电力系统安全稳定运行至关重要。近年来,深度学习技术在负荷预测领域取得了显著成果,其中 Transformer-BiLSTM 模型凭借其强大的时序特征提取能力和非线性映射能力,成为负荷预测的热门选择。然而,该模型存在参数较多、训练时间长、易陷入局部最优等问题。为了解决这些问题,本文提出了一种基于白冠鸡优化算法 (COOT) 的 Transformer-BiLSTM 负荷预测模型。COOT 算法是一种新型的元启发式优化算法,具有较强的全局搜索能力和局部搜索能力。通过 COOT 算法对 Transformer-BiLSTM 模型进行参数优化,可以有效提升模型的预测精度和泛化能力。本文在 Matlab 平台上搭建了该模型,并利用真实负荷数据进行仿真实验,结果表明该模型在预测精度和收敛速度方面均优于传统方法,具有良好的应用潜力。

关键词:负荷预测,Transformer-BiLSTM,白冠鸡优化算法,COOT,Matlab

1. 引言

负荷预测是电力系统管理和运行的重要环节,可以为电力系统调度、发电规划、市场交易提供可靠的决策依据。随着电力系统规模不断扩大、负荷结构日益复杂,对负荷预测精度要求也越来越高。传统负荷预测方法主要基于统计学和专家经验,但难以处理复杂的多元因素和非线性关系。近年来,深度学习技术的快速发展为负荷预测提供了新的思路和方法。

深度学习模型可以自动学习数据中的复杂特征,在处理大规模、高维数据方面具有明显优势。其中,Transformer-BiLSTM 模型凭借其强大的时序特征提取能力和非线性映射能力,成为负荷预测的热门选择。该模型采用 Transformer 结构提取时间序列数据的长期依赖关系,并结合 BiLSTM 结构捕捉短时依赖关系,能够有效地提高负荷预测精度。

然而,Transformer-BiLSTM 模型也存在一些问题。首先,该模型的参数数量较多,容易导致过拟合,影响模型的泛化能力。其次,模型训练时间较长,难以满足实时性要求。最后,模型容易陷入局部最优,导致预测精度受限。

为了解决这些问题,本文提出了一种基于白冠鸡优化算法 (COOT) 的 Transformer-BiLSTM 负荷预测模型。COOT 算法是一种新型的元启发式优化算法,具有较强的全局搜索能力和局部搜索能力。通过 COOT 算法对 Transformer-BiLSTM 模型进行参数优化,可以有效提升模型的预测精度和泛化能力。

2. 白冠鸡优化算法 (COOT)

COOT 算法是一种模拟白冠鸡觅食行为的元启发式优化算法。该算法通过模拟白冠鸡的集体觅食行为,利用种群中个体之间的信息交流和合作,寻找最优解。

COOT 算法主要包含以下步骤:

  1. 初始化种群: 随机生成一定数量的白冠鸡个体,每个个体对应一组可行解。

  2. 觅食过程: 每个白冠鸡个体根据自身感知到的食物信息,选择最佳觅食位置。

  3. 信息交流: 白冠鸡个体之间进行信息交流,共享觅食经验。

  4. 更新位置: 根据觅食过程和信息交流,更新每个白冠鸡个体的觅食位置。

  5. 重复步骤 2-4: 直到满足停止条件,例如达到最大迭代次数或找到最优解。

3. Transformer-BiLSTM 模型

Transformer-BiLSTM 模型由两部分组成:Transformer 层和 BiLSTM 层。

  • Transformer 层: Transformer 层主要用于提取时间序列数据的长期依赖关系。该层使用自注意力机制来学习数据中的全局特征,并通过多头注意力机制提高模型的表达能力。

  • BiLSTM 层: BiLSTM 层主要用于捕捉时间序列数据的短时依赖关系。该层利用双向 LSTM 结构,分别从正向和反向两个方向提取特征,并结合这些特征进行预测。

4. 基于 COOT 的 Transformer-BiLSTM 负荷预测模型

本文提出的基于 COOT 的 Transformer-BiLSTM 负荷预测模型将 COOT 算法应用于 Transformer-BiLSTM 模型的参数优化。

模型训练流程如下:

  1. 初始化 Transformer-BiLSTM 模型: 随机初始化模型参数。

  2. 使用 COOT 算法优化模型参数: 将 Transformer-BiLSTM 模型的参数作为 COOT 算法的优化目标。

  3. 训练模型: 使用优化后的模型参数训练 Transformer-BiLSTM 模型。

  4. 预测负荷: 使用训练好的模型预测未来的负荷数据。

5. 仿真实验

本文利用真实负荷数据进行仿真实验,评估模型的预测性能。

  • 数据来源: 利用某地区的真实负荷数据进行训练和测试。

  • 实验指标: 使用均方根误差 (RMSE)、平均绝对误差 (MAE) 和决定系数 (R-squared) 作为模型性能评价指标。

  • 实验结果: 仿真结果表明,基于 COOT 的 Transformer-BiLSTM 负荷预测模型在预测精度和收敛速度方面均优于传统方法,具有良好的应用潜力。

6. 结论

本文提出了一种基于白冠鸡优化算法 (COOT) 的 Transformer-BiLSTM 负荷预测模型。该模型利用 COOT 算法对 Transformer-BiLSTM 模型进行参数优化,有效提升了模型的预测精度和泛化能力。仿真实验结果验证了模型的有效性和优越性,为电力系统负荷预测提供了新的思路和方法。

⛳️ 运行结果

📣 部分代码

%%  数据分析num_size = 0.8;                              % 训练集占数据集比例outdim = 2;                                  % 最后一列为输出num_samples = size(res, 1);                  % 样本个数res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)num_train_s = round(num_size * num_samples); % 训练集样本个数f_ = size(res, 2) - outdim;                  % 输入特征维度

🔗 参考文献

[1] 郑林江,龙颢.一种基于Transformer框架的多变量长序列时间序列预测模型的构建方法:CN202210162689.2[P].CN202210162689.2[2024-07-19].

[2] 蔡美玲,汪家喜,刘金平,等.基于Transformer GAN架构的多变量时间序列异常检测[J].中国科学:信息科学, 2023, 53(5):972-992.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值