本次介绍一种新的自然启发式元启发式算法——凤头豪猪优化器(Crested Porcupine Optimizer,CPO)。该成果于2024年1月发表在中科院1区SCI top期刊Knowledge-Based Systems(IF = 8.8)上。
1、简介
受到凤头豪猪(CP)各种防御行为的启发,用于精确优化各种优化问题,特别是那些具有大规模攻击的问题。从最不具攻击性到最具攻击性,冠豪猪使用四种不同的保护机制:视觉、声音、气味和物理攻击。第一和第二种防御技术(视觉和声音)反映了CPO的探索行为,而第三和第四种防御策略(气味和物理攻击)反映了CPO的剥削行为。所提出的算法提出了一种称为循环种群减少技术的新策略,以模拟并非所有CP都激活其防御机制,而只激活那些受到威胁的介词。该策略促进了收敛速度和种群多样性。
2、数学建模
- 种群初始化
常规的随机初始化种群 - 循环种群减少技术(CPR)
除了加快收敛速度外,还可以保持种群多样性。这种策略模拟了这样一种想法,即并非所有CP都激活防御机制,而是只有那些受到威胁的CP才激活防御机制。因此,在该策略中,在优化过程中从种群中获得一些CP,以加快收敛速度,并将它们重新引入种群中,从而提高多样性,避免陷入局部极小值;该循环基于循环变量T,以确定优化过程中执行数学模型如下:
其中,