✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
摘要: 针对传统深度置信网络(DBN)在多输入单输出预测问题中存在易陷入局部最优、训练时间长等缺陷,本文提出了一种基于雪融优化算法(SAO)优化的深度极限学习机(DELM)模型,即SAO-DELM。SAO算法通过模拟雪融化过程,以高效、稳定的方式搜索最优参数。将SAO算法应用于DELM模型的优化,可以有效克服传统DBN的缺陷,提高模型的预测精度和效率。本文详细阐述了SAO-DELM模型的理论框架、算法流程,并利用Matlab编程实现了模型的预测功能。通过实例验证,证明SAO-DELM模型在多输入单输出预测问题中具有明显优势。
关键词: 深度极限学习机(DELM), 雪融优化算法(SAO), 多输入单输出预测, Matlab实现
1. 引言
近年来,深度学习技术在各个领域都取得了显著成果,其中深度置信网络(DBN)作为一种重要的深度学习模型,在图像识别、语音识别、目标检测等方面表现突出。然而,传统DBN模型在多输入单输出预测问题中存在以下缺陷:
-
易陷入局部最优: DBN模型的训练过程依赖于随机梯度下降法,容易陷入局部最优解,导致模型性能下降。
-
训练时间长: DBN模型的层数较多,训练过程需要大量的迭代次数,耗时较长。
为了克服上述缺陷,本文提出了一种基于雪融优化算法(SAO)优化的深度极限学习机(DELM)模型,即SAO-DELM。DELM模型作为DBN的简化模型,具有训练速度快、泛化能力强的优点。SAO算法通过模拟雪融化过程,以高效、稳定的方式搜索最优参数,能够有效避免传统DBN模型的缺陷。
2. SAO-DELM模型
2.1 深度极限学习机(DELM)
DELM模型是一种基于极限学习机(ELM)的深度学习模型,其结构类似于DBN,但将每一层的隐含层节点替换为ELM,并利用ELM的快速训练特点,提高模型的训练效率。
DELM模型的训练过程如下:
-
随机初始化所有隐含层节点的权重和偏置。
-
对输入数据进行特征提取,并将其输入到第一层ELM。
-
利用ELM的快速训练方法,训练第一层ELM的输出权重。
-
将第一层ELM的输出作为下一层的输入,重复步骤2-3,训练所有层ELM的输出权重。
2.2 雪融优化算法(SAO)
SAO算法是一种新型的元启发式优化算法,其灵感来源于自然界雪融化过程。SAO算法通过模拟雪融化过程,以高效、稳定的方式搜索最优参数。
SAO算法的流程如下:
-
初始化雪群,每个雪粒代表一个候选解。
-
计算每个雪粒的目标函数值。
-
根据目标函数值,对雪粒进行排序,并根据排序结果更新雪粒的位置。
-
重复步骤2-3,直到满足终止条件。
2.3 SAO-DELM模型的训练过程
SAO-DELM模型的训练过程如下:
-
初始化DELM模型的参数,包括隐含层节点数、激活函数等。
-
将SAO算法应用于DELM模型的优化,以寻找最优的参数组合。
-
利用最优参数组合训练DELM模型。
3. Matlab实现
本文利用Matlab编程语言实现了SAO-DELM模型的多输入单输出预测功能。具体步骤如下:
3.1 数据准备
首先需要准备多输入单输出数据集,包括输入变量和输出变量。
3.2 模型构建
利用Matlab的深度学习工具箱,构建SAO-DELM模型,包括定义模型结构、设置参数等。
3.3 模型训练
利用SAO算法对DELM模型进行优化,并利用训练数据集训练模型。
3.4 模型预测
利用训练好的SAO-DELM模型对测试数据集进行预测,并评估模型的预测精度。
4. 实例验证
本文使用一个实际的多输入单输出预测问题来验证SAO-DELM模型的有效性。该问题为预测某地区未来一年的电力负荷,输入变量包括历史电力负荷、气温、湿度等,输出变量为未来一年的电力负荷。
4.1 数据预处理
首先将数据进行标准化处理,并将数据分为训练集和测试集。
4.2 模型训练和预测
利用SAO-DELM模型对训练集进行训练,并利用测试集进行预测。
4.3 性能评估
利用RMSE、MAE等指标评估模型的预测精度。
5. 结论
本文提出了一种基于雪融优化算法(SAO)优化的深度极限学习机(DELM)模型,即SAO-DELM。SAO算法能够有效克服传统DBN模型的缺陷,提高模型的预测精度和效率。通过实例验证,证明SAO-DELM模型在多输入单输出预测问题中具有明显优势。
6. 未来展望
未来将进一步研究SAO-DELM模型的改进方向,例如:
-
研究不同的SAO算法参数对模型性能的影响。
-
将SAO-DELM模型应用于更多类型的多输入单输出预测问题。
-
探索SAO-DELM模型与其他深度学习模型的融合。
⛳️ 运行结果
🔗 参考文献
[1] 曹广喜,凌美君.基于状态识别RIME-DELM多变量时间序列预测的风速预测系统:202410323185[P][2024-08-18].
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类