✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
一、引言
数据聚类是机器学习中的一个核心问题,其目标是将数据集划分为若干个子集,使得每个子集内部的样本相似度较高,而不同子集之间的样本相似度较低。传统的谱聚类算法通常需要将所有数据集中在一个中心服务器上进行处理,这在数据隐私保护和数据安全方面存在一定的挑战。近年来,随着联邦学习技术的兴起,联邦谱聚类算法应运而生,它能够在保护数据隐私的情况下实现高效的聚类分析。
本文将深入探讨联邦谱聚类算法,并提供基于 Matlab 的代码实现。我们将介绍算法原理、代码实现细节以及实验结果分析,旨在为读者提供一个完整的学习和实践平台。
二、联邦谱聚类算法原理
联邦谱聚类算法的基本思想是在多个参与方之间协作完成聚类任务,每个参与方仅共享其本地数据的特征矩阵和聚类结果,而无需共享原始数据。其核心步骤如下:
-
**数据预处理:**每个参与方对本地数据进行预处理,例如数据标准化、特征提取等。
-
**构建相似度矩阵:**每个参与方根据其本地数据构建相似度矩阵,例如使用高斯核函数或余弦相似度。
-
**特征提取:**每个参与方对相似度矩阵进行拉普拉斯矩阵分解,并提取前 k 个特征向量作为聚类特征。
-
**特征共享:**每个参与方将其提取的聚类特征向量共享给中心服务器。
-
**聚类中心计算:**中心服务器将所有参与方共享的聚类特征向量进行拼接,并使用 K-means 算法计算聚类中心。
-
**聚类结果分配:**中心服务器将计算的聚类中心广播给每个参与方,每个参与方根据其本地数据的聚类特征向量将样本分配到相应的聚类中心。
-
**聚类结果反馈:**每个参与方将本地聚类结果反馈给中心服务器,中心服务器汇总所有参与方的聚类结果。
三、Matlab 代码实现
以下代码实现了基于 Laplacian 特征映射的联邦谱聚类算法,其中 data
存储每个参与方的本地数据,k
为聚类个数。
disp(global_cluster_results);
% 计算相似度矩阵
function similarity_matrix = compute_similarity(data)
similarity_matrix = zeros(size(data, 1));
for i = 1:size(data, 1)
for j = i:size(data, 1)
similarity_matrix(i, j) = exp(-norm(data(i, :) - data(j, :))^2 / 2);
similarity_matrix(j, i) = similarity_matrix(i, j);
end
end
end
% 计算拉普拉斯矩阵
function laplacian_matrix = compute_laplacian(similarity_matrix)
degree_matrix = diag(sum(similarity_matrix));
laplacian_matrix = degree_matrix - similarity_matrix;
end
四、实验结果分析
为了验证算法的有效性,我们在多个数据集上进行了实验。实验结果表明,联邦谱聚类算法能够在保护数据隐私的情况下,获得与传统谱聚类算法相媲美的聚类效果。同时,该算法还具有良好的可扩展性,可以处理大规模数据集。
五、总结
本文介绍了联邦谱聚类算法的原理和实现方法,并提供了基于 Matlab 的代码实现。该算法能够在保护数据隐私的情况下实现高效的聚类分析,为解决大规模数据聚类问题提供了一种新的思路。未来的研究方向包括改进算法效率、增强算法鲁棒性以及探索更广泛的应用场景。
⛳️ 运行结果
🔗 参考文献
author = {Qiao, Dong and Ding, Chris and Fan, Jicong},\ booktitle = {Advances in Neural Information Processing Systems},\ editor = {A. Oh and T. Naumann and A. Globerson and K. Saenko and M. Hardt and S. Levine},\ pages = {58520--58555},\ publisher = {Curran Associates, Inc.},\ title = {Federated Spectral Clustering via Secure Similarity Reconstruction},\
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类