【无人机控制】基于PID控制四旋翼无人机综述模型Matlab代码

 ✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

四旋翼无人机凭借其独特的垂直起降能力、灵活的机动性和相对较低的成本,在近年来得到了广泛的应用,涵盖了航拍摄影、快递物流、农业植保、灾害救援等诸多领域。然而,四旋翼无人机的飞行控制系统设计复杂,其稳定性和精确性很大程度上依赖于控制算法的优劣。本文将对基于PID控制的四旋翼无人机飞行控制系统进行综述,并结合Matlab仿真代码,深入探讨PID控制器的设计、参数整定以及性能评估。

一、四旋翼无人机动力学模型

四旋翼无人机是一个典型的欠驱动系统,其姿态和位置控制需要精细的控制算法。建立精确的动力学模型是控制系统设计的基础。通常,四旋翼无人机的动力学模型可以由刚体动力学方程描述,考虑四个旋翼产生的推力及力矩,可以建立如下状态空间模型:

ẋ = f(x, u)

其中,x 代表状态向量,包括无人机的姿态(滚转角 φ,俯仰角 θ,偏航角 ψ)、角速度(滚转角速度 p,俯仰角速度 q,偏航角速度 r)、位置(x, y, z)以及速度 (ẋ, ẏ, ż)。u 代表控制输入向量,包括四个旋翼的转速 ω1, ω2, ω3, ω4。f(x, u) 代表系统状态方程,其具体形式取决于所采用的坐标系和简化假设。通常情况下,会采用简化的动力学模型,例如忽略空气动力学效应等,以简化计算。

模型建立过程中,需要考虑以下因素:

  • 旋翼的推力与转速关系: 通常采用非线性关系,需要进行实验标定。

  • 惯性矩: 无人机自身的质量分布影响惯性矩,需要精确测量。

  • 重力: 重力是影响无人机姿态和位置的主要因素。

  • 空气动力学: 空气阻力、升力等空气动力学效应会影响无人机的飞行性能,但在简化模型中常被忽略。

二、PID控制器的设计与参数整定

PID控制器是一种经典的反馈控制算法,凭借其结构简单、易于实现和良好的控制性能,广泛应用于四旋翼无人机的姿态和位置控制。PID控制器包含比例(P)、积分(I)、微分(D)三个部分,其输出为:

u = Kp*e + Ki*∫e dt + Kd*(de/dt)

其中,e 为误差信号,Kp、Ki、Kd 分别为比例、积分、微分增益。

PID控制器的参数整定对控制系统的性能至关重要。常用的参数整定方法包括:

  • 齐格勒-尼科尔斯法: 基于阶跃响应曲线确定控制器参数,简单易行但精度有限。

  • 试凑法: 通过反复实验调整参数,经验性强,效率较低。

  • 最优控制理论: 利用最优控制理论计算最佳PID参数,可以获得更高的控制精度,但计算复杂度较高。

  • 自适应PID控制: 根据系统动态变化自动调整PID参数,可以适应环境变化和扰动。

对于四旋翼无人机,通常采用级联PID控制结构,分别设计姿态PID控制器和位置PID控制器。姿态控制器以期望姿态为输入,输出控制力矩;位置控制器以期望位置为输入,输出期望姿态。这种级联控制结构可以有效地解耦姿态和位置控制,提高控制精度。

三、Matlab仿真代码及结果分析

以下是一个基于Matlab的简化四旋翼无人机PID控制仿真代码片段,展示了姿态控制部分

t));
theta_des = deg2rad(10*cos(t));
psi_des = deg2rad(0*t);

% 控制器实现...(此处省略具体控制算法实现代码)

% 绘制结果
figure;
subplot(3,1,1); plot(t, rad2deg(phi), rad2deg(phi_des)); legend('实际滚转角','期望滚转角');
subplot(3,1,2); plot(t, rad2deg(theta), rad2deg(theta_des)); legend('实际俯仰角','期望俯仰角');
subplot(3,1,3); plot(t, rad2deg(psi), rad2deg(psi_des)); legend('实际偏航角','期望偏航角');

完整的代码需要包含四旋翼无人机的动力学模型、PID控制算法实现以及仿真结果绘制等部分。通过调整PID参数,可以观察控制系统的响应特性,例如超调量、上升时间、稳定时间等,并根据实际需求进行参数优化。

仿真结果分析需要关注控制系统的稳定性、精度、鲁棒性等指标。如果控制系统存在振荡、超调或无法达到期望值等现象,则需要调整PID参数或改进控制算法。

四、总结与展望

本文综述了基于PID控制的四旋翼无人机飞行控制系统,并给出了Matlab仿真代码框架。PID控制器凭借其简单性和有效性,成为四旋翼无人机控制中的常用方法。然而,PID控制也存在一些局限性,例如参数整定依赖经验、鲁棒性有限等。未来研究可以考虑结合先进控制算法,例如模糊控制、神经网络控制、模型预测控制等,以提高四旋翼无人机的控制性能,适应更复杂的飞行环境和任务需求。此外,深入研究非线性动力学模型和更精确的空气动力学模型,对于提高控制精度也具有重要意义。 同时,结合更先进的传感器技术,例如视觉传感器和IMU融合技术,将进一步增强四旋翼无人机的自主性和可靠性。

⛳️ 运行结果

🔗 参考文献

This model contains the simulations used in the paper: Lopez-Sanchez, I., & Moreno-Valenzuela, J. (2023). PID control of quadrotor UAVs: A survey. Annual Reviews in Control, 56, 100900.

🎈 部分理论引用网络文献,若有侵权联系博主删除

博客擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值