【无人机定位】纯定向被动定位视角下的无人机群体定位与调度方法附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

摘要: 无人机技术的飞速发展催生了对群体协同作业的需求,而精准的定位是实现高效协同的关键。本文从纯定向被动定位的视角,深入探讨无人机群体定位与调度方法。针对传统定位方法在复杂环境下的局限性,我们分析了基于到达角(AOA)等纯被动定位技术的优势与挑战,并提出一种融合多传感器数据、优化算法以及群体智能策略的无人机群体定位与调度框架。该框架旨在提高定位精度、鲁棒性和效率,并适应动态变化的环境。

关键词: 无人机群体定位;纯定向被动定位;到达角(AOA);多传感器融合;群体智能;调度算法

1. 引言

随着无人机技术的成熟和应用场景的拓展,无人机群体协同作业日益受到关注。在诸如环境监测、灾害救援、精准农业等领域,无人机群体能够完成单机无法胜任的复杂任务。然而,实现高效的群体协同作业的前提是具备精确的定位能力。传统的基于GPS的定位方法在遮挡严重、信号干扰强烈的环境下性能显著下降,甚至完全失效。因此,研究在复杂环境下可靠的无人机定位方法至关重要。

纯定向被动定位技术,例如基于到达角(AOA)的定位方法,因其无需主动发射信号,具有隐蔽性好、抗干扰能力强等优势,成为近年来研究的热点。然而,纯被动定位也面临着诸多挑战,例如测量噪声、多径效应以及非线性误差等,这些都可能导致定位精度下降,甚至定位失败。因此,需要发展更加鲁棒和精确的纯定向被动定位算法,并结合有效的调度策略,以实现无人机群体的有效协同作业。

2. 基于到达角的纯定向被动定位技术

到达角(AOA)测量是纯定向被动定位的核心技术之一。通过接收来自已知位置基站的信号,并利用天线阵列测量信号到达的方向,可以估计出无人机的方位角。然而,单一AOA测量存在几何稀释度(GDOP)问题,尤其在基站布局不合理的情况下,定位精度会急剧下降。

为了提高定位精度,本文提出以下改进策略:

  • 多传感器融合: 将AOA测量与其他被动定位信息,例如到达时间差(TDOA)或接收信号强度(RSSI),进行融合。通过卡尔曼滤波或粒子滤波等算法,可以有效地降低单一传感器测量误差的影响,提高定位精度和鲁棒性。

  • 非线性优化算法: 由于AOA测量值与无人机位置之间存在非线性关系,传统的线性最小二乘法难以获得最优解。本文采用非线性最小二乘法,例如Levenberg-Marquardt算法或高斯-牛顿法,以迭代方式求解无人机位置,提高定位精度。

  • 误差模型分析与补偿: 对AOA测量误差进行建模分析,并根据误差模型对测量结果进行补偿,例如考虑多径效应和天线阵列校准误差的影响。

3. 无人机群体定位与调度框架

基于上述纯定向被动定位技术,本文提出一个融合多传感器数据、优化算法以及群体智能策略的无人机群体定位与调度框架,其主要组成部分如下:

  • 分布式定位模块: 每个无人机独立进行AOA测量,并利用多传感器融合算法进行自身定位。同时,无人机之间可以通过无线通信交换定位信息,实现协同定位。

  • 群体智能优化模块: 采用群体智能算法,例如粒子群算法或蚁群算法,对无人机群体的整体布局进行优化,提高定位精度和覆盖范围。

  • 任务分配与路径规划模块: 根据无人机的定位信息和任务需求,动态分配任务并规划无人机的飞行路径,以最大限度地提高作业效率和资源利用率。该模块考虑了无人机的飞行能力、电池寿命以及环境约束等因素。

  • 动态调整与反馈模块: 根据实时环境变化和定位结果,动态调整定位算法参数、任务分配策略和路径规划方案,以保证系统适应性和鲁棒性。

4. 仿真实验与结果分析

本文通过仿真实验验证了所提出框架的有效性。实验结果表明,与传统的单一AOA定位方法相比,该框架能够显著提高无人机群体的定位精度和鲁棒性,并有效适应动态变化的环境。此外,该框架的调度策略能够显著提高无人机群体的作业效率。

5. 结论与展望

本文提出了一种基于纯定向被动定位的无人机群体定位与调度框架,该框架融合了多传感器数据、非线性优化算法以及群体智能策略,能够有效提高无人机群体的定位精度、鲁棒性和效率。未来的研究方向包括:

  • 更复杂的误差模型和补偿算法的研究;

  • 更有效的群体智能算法的探索;

  • 基于深度学习的定位方法的研究;

  • 在实际环境中的应用和测试。

通过持续的研究和改进,纯定向被动定位技术将在无人机群体协同作业中发挥越来越重要的作用,为各种应用场景提供更加可靠和高效的解决方案。

📣 部分代码

position = [

    100,0;

    100,360/9;

    112,80.21;

    105,119.75;

    98,159.86;

    112,199.96;

    105,240.07;

    98,280.17;

    112,320.28];

position(:,2) = position(:,2)/180*pi;

target_pol = target;

[target(:,1),target(:,2)] = pol2cart(target(:,2),target(:,1));

[position(:,1),position(:,2)] = pol2cart(position(:,2),position(:,1));

for step = 1:20

    selected = [1,2];

    for i = 3:9

        b_warning = false;

        p2 = position(i,:);

        p3 = position(selected(1),:);

        p4 = position(selected(2),:);

        a1 = get_angle(0,0,...

            p2(1),p2(2),p3(1),p3(2));

        a2 = get_angle(0,0,...

            p2(1),p2(2),p4(1),p4(2));

        a3 = get_angle(p4(1),p4(2),...

            p2(1),p2(2),p3(1),p3(2));

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值