✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
摘要: 本文探讨了在机器人栅格地图环境下,利用豪猪算法(CPO,Covariance Matrix Adaptation Evolution Strategy with Path Optimization)进行路径规划的问题。目标函数设定为路径长度最小化。 文章首先介绍了栅格地图表示法以及路径规划问题的基本概念,然后详细阐述了豪猪算法的原理及其在路径规划中的应用,包括参数设置、算法流程以及与其他常用算法的比较。最后,通过仿真实验验证了该方法的有效性,并分析了其优缺点以及未来的改进方向。
关键词: 机器人路径规划;栅格地图;豪猪算法;CPO;最短距离;进化策略
1. 引言
机器人路径规划是机器人领域的核心问题之一,其目标是在给定的环境中,为机器人找到一条从起始点到目标点的安全、高效的路径。栅格地图作为一种常用的环境表示方法,将环境空间划分成离散的栅格单元,每个单元格表示环境中的一个状态,例如空闲或障碍物。基于栅格地图的路径规划算法种类繁多,例如A*算法、Dijkstra算法等。然而,这些算法在处理复杂环境或高维空间时,计算效率可能会降低,甚至陷入局部最优解。
近年来,基于进化算法的路径规划方法受到了广泛关注。进化算法具有强大的全局搜索能力,能够有效地解决复杂的优化问题。豪猪算法 (CPO) 作为一种改进的协方差矩阵自适应进化策略 (CMA-ES),通过引入路径优化机制,进一步提升了算法的收敛速度和解的质量。本文旨在研究基于豪猪算法CPO在机器人栅格地图路径规划中的应用,并以路径长度最小化为目标函数,探索其性能和适用性。
2. 栅格地图与路径规划问题
栅格地图将环境表示为一个二维或三维的栅格数组,每个单元格的值表示该单元格的状态,例如0表示空闲,1表示障碍物。这种表示方法简单直观,易于实现,并且适用于各种机器人平台。
路径规划问题可以形式化地描述为:给定一个栅格地图,起始点S和目标点G,找到一条从S到G的路径,满足以下条件:
-
完整性: 路径必须从S连接到G。
-
可行性: 路径上的所有单元格都必须是空闲的,即不能穿过障碍物。
-
最优性: 路径的长度(或代价)应最小化。
本文的目标函数即为路径长度的最小化,即找到一条从S到G的最短路径。
3. 豪猪算法(CPO)及其在路径规划中的应用
豪猪算法 (CPO) 是一种基于协方差矩阵自适应进化策略 (CMA-ES) 的改进算法。CMA-ES 通过不断调整搜索方向的协方差矩阵来引导搜索过程,具有强大的全局搜索能力。而 CPO 算法在此基础上,引入了路径优化机制,能够更有效地引导搜索过程向最优解收敛。
在路径规划问题中,CPO 算法的应用步骤如下:
-
编码: 将路径编码为一个实数向量,向量中的每个元素代表路径上的一个点坐标 (x, y)。
-
初始种群生成: 随机生成初始种群,每个个体代表一条从S到G的路径。
-
适应度评估: 计算每个个体的适应度值,即路径长度。路径长度越短,适应度值越高。 对于不可行的路径(即穿过障碍物的路径),其适应度值设为一个较小的惩罚值。
-
选择: 根据适应度值选择优良个体进入下一代。
-
变异: 对选择的个体进行变异操作,产生新的个体。CPO 算法利用协方差矩阵来引导变异方向,提高搜索效率。路径优化机制则进一步精细化对路径的调整,例如对路径进行局部搜索或平滑处理。
-
更新协方差矩阵: 根据选择的个体更新协方差矩阵,引导后续的搜索过程。
-
终止条件判断: 如果满足终止条件(例如迭代次数达到上限或适应度值达到目标值),则算法结束,返回最优路径。否则,转到步骤3。
4. 仿真实验与结果分析
为了验证CPO算法在栅格地图路径规划中的有效性,我们进行了仿真实验。实验环境采用随机生成的栅格地图,地图大小为 100x100,障碍物比例为 30%。起始点和目标点随机选取。我们将CPO算法与A*算法进行比较,比较指标为路径长度和计算时间。
实验结果表明,CPO算法能够在大多数情况下找到比A算法更短的路径,尤其是在复杂环境中,CPO算法的优势更加明显。然而,CPO算法的计算时间比A算法长,这是因为进化算法的计算复杂度较高。
5. 结论与未来工作
本文研究了基于豪猪算法CPO进行机器人栅格地图路径规划的方法,并通过仿真实验验证了其有效性。CPO算法具有强大的全局搜索能力,能够有效地处理复杂环境,找到较短的路径。然而,其计算时间较长,需要进一步优化。
未来的工作将集中在以下几个方面:
-
改进CPO算法: 研究更有效的路径优化策略,提高算法的收敛速度和效率。
-
考虑动态环境: 将CPO算法扩展到动态环境,处理移动障碍物等情况。
-
多机器人路径规划: 研究CPO算法在多机器人路径规划中的应用。
-
结合其他算法: 将CPO算法与其他路径规划算法结合,例如将CPO算法用于全局路径规划,而将A*算法用于局部路径规划。
📣 部分代码
% Source codes demo version 1.1
%__________________________________________________________________
% Chinese pangolin optimizer (CPO)
% Developed in MATLAB R2021b
% programmer: Zhiqing GUO
% E-mail: mathgzq@gmail.com
% Paper:
% Zhiqing GUO, Guangwei LIU, Feng JIANG, and Wei LIU
% Chinese Pangolin Optimizer: A new bio-inspired metaheuristic algorithm
%__________________________________________________________________
function Cm = Aroma_concentration(Max_iter)
%% Source strength of the aroma
Q=100;
for t = 1:Max_iter
r1=rand();
% Effective height of the aroma source
H = 0.5 * r1;% Eq.(11)
r2=rand();
% Mean wind speed
u = 2 + r2;% Eq.(10)
% Horizontal diffusion parameter
sigma_y(t) = 50-((10*t)/Max_iter);% Eq.(12)
% Vertical diffusion parameter
sigma_z(t) = sin((pi*t)/(Max_iter))+40*exp(-t/Max_iter)-10*log((pi*t)/(Max_iter));%Eq.(13)
M(t) = (Q/(pi*u*sigma_y(t)*sigma_z(t)))*exp(-(H^2)/(2*(sigma_z(t))^2));%Eq.(9)
end
% Aroma concentration factor
Cm=rescale(M);%Eq.(14)
end
⛳️ 运行结果


🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
擅长领域:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇
3956

被折叠的 条评论
为什么被折叠?



