【数据驱动】基于数据驱动MPC方法Matlab实现

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

模型预测控制 (Model Predictive Control, MPC) 作为一种先进的控制策略,凭借其能够处理多变量系统、约束条件和非线性特性等优势,在工业过程控制领域得到了广泛应用。然而,传统MPC方法严重依赖于精确的系统模型,而构建精确的模型往往需要大量的先验知识和系统辨识工作,这在许多实际应用中是困难甚至不可能实现的。面对模型不确定性、模型构建成本高以及系统快速变化等挑战,数据驱动MPC方法应运而生,为解决上述问题提供了新的途径。本文将深入探讨数据驱动MPC方法的原理、方法分类、挑战以及未来发展方向。

一、传统MPC方法的局限性

传统MPC的核心在于利用系统模型预测未来一段时间内的系统输出,并通过优化算法计算最优控制序列,以最小化目标函数并满足系统约束。然而,这种方法存在以下局限性:

  • 模型精度依赖性: 传统MPC方法对模型的精度要求很高。模型的不精确性会直接影响预测精度,从而导致控制性能下降甚至系统不稳定。在许多复杂系统中,构建精确的模型是一项极其困难的任务,甚至无法实现。

  • 模型构建成本高: 构建精确的模型需要大量的实验数据和专业的知识,这需要耗费大量的时间和资源。对于一些复杂的非线性系统,模型的构建过程可能非常复杂且耗时。

  • 适应性差: 当系统参数发生变化或受到扰动时,传统MPC的控制性能会下降,甚至失效。这需要重新构建模型或调整控制参数,增加了系统的维护成本和复杂性。

二、数据驱动MPC方法的原理与分类

数据驱动MPC方法的核心思想是利用历史数据直接学习系统的动态特性,而无需建立精确的系统模型。它利用机器学习技术,例如神经网络、支持向量机和径向基函数网络等,从数据中提取系统信息,构建数据驱动的预测模型。

数据驱动MPC方法可以根据预测模型的构建方式进行分类:

  • 基于黑箱模型的MPC: 这种方法不考虑系统的物理机制,直接利用机器学习算法从输入输出数据中学习系统的动态特性。常用的方法包括神经网络MPC、支持向量机MPC等。其优势在于无需先验知识,能够处理复杂的非线性系统。然而,其泛化能力和解释性相对较弱,容易出现过拟合现象。

  • 基于灰箱模型的MPC: 这种方法结合了先验知识和数据驱动方法。它利用先验知识建立系统的部分模型,然后利用数据驱动方法学习剩余的未知部分。这种方法结合了物理模型和数据驱动的优点,能够提高模型的精度和泛化能力。例如,可以利用物理模型描述系统的基本结构,然后利用神经网络学习模型参数或剩余的非线性部分。

  • 基于系统辨识的MPC: 这种方法首先利用系统辨识技术从数据中估计系统的模型参数,然后将估计的模型用于MPC控制器设计。与直接使用黑箱模型相比,这种方法可以提供更具物理意义的模型,并提高模型的可解释性。但是,系统辨识的精度会直接影响MPC控制性能。

三、数据驱动MPC方法的挑战

尽管数据驱动MPC方法具有诸多优势,但也面临着一些挑战:

  • 数据质量: 数据驱动方法的性能严重依赖于数据的质量。数据的噪声、缺失和异常值都会影响模型的精度和泛化能力。因此,需要对数据进行预处理和清洗。

  • 模型选择与参数调优: 选择合适的机器学习模型和参数对于数据驱动MPC方法至关重要。需要根据具体的应用场景选择合适的模型,并进行参数调优,以获得最佳的控制性能。这需要大量的实验和经验积累。

  • 稳定性分析与保证: 数据驱动MPC方法的稳定性分析相对困难。保证闭环系统的稳定性是MPC控制的关键问题,需要发展新的稳定性分析方法和控制策略。

  • 可解释性: 一些黑箱模型的解释性较差,难以理解模型的内部机制,这会影响控制器的可信度和维护。

四、未来发展方向

未来数据驱动MPC方法的研究方向主要包括:

  • 开发更有效的模型结构和算法: 探索更有效的机器学习模型和算法,提高模型的精度、泛化能力和计算效率。例如,研究深度学习在MPC中的应用,利用深度神经网络强大的学习能力提高预测精度。

  • 改进数据预处理和清洗技术: 发展更有效的数据预处理和清洗技术,提高数据的质量,减少噪声和异常值的影响。

  • 加强稳定性分析和保证: 发展新的稳定性分析方法和控制策略,保证闭环系统的稳定性。例如,结合鲁棒控制技术,提高控制器的鲁棒性。

  • 提升模型的可解释性: 研究可解释的机器学习模型,提高模型的可理解性,便于分析和维护。

五、结语

数据驱动MPC方法为解决传统MPC方法的局限性提供了有效的途径。随着机器学习技术的不断发展和数据获取能力的提升,数据驱动MPC方法将在工业过程控制领域发挥越来越重要的作用。然而,仍需克服数据质量、模型选择、稳定性分析和可解释性等挑战,才能充分发挥其潜力,推动其在更广泛领域的应用。 未来的研究需要关注算法的效率、鲁棒性和可解释性,并结合实际应用场景进行深入研究,才能使数据驱动MPC真正成为解决复杂系统控制问题的有力工具。

📣 部分代码

fprintf('Environment:Site Outdoor Air Wetbulb Temperature [C] \n')

fprintf('Environment:Site Outdoor Air Relative Humidity [%%] \n')

fprintf('Environment:Site Wind Speed [m/s] \n')

fprintf('Environment:Site Wind Direction [deg] \n')

fprintf('Environment:Site Horizontal Infrared Radiation Rate per Area [W/m2] \n')

fprintf('Environment:Site Diffuse Solar Radiation Rate per Area [W/m2] \n')

fprintf('Environment:Site Direct Solar Radiation Rate per Area [W/m2] \n')

fprintf('THERMAL ZONE: BOX:Zone Outdoor Air Wind Speed [m/s] \n')

fprintf('Outputs: \n')

fprintf('THERMAL ZONE: BOX:Zone Mean Air Temperature [C] \n')

fprintf('GSHP configuration \n')

fprintf('Inputs:\n')

fprintf('Environment:Site Outdoor Air Drybulb Temperature [C] \n')

fprintf('Environment:Site Outdoor Air Wetbulb Temperature [C] \n')

fprintf('Environment:Site Outdoor Air Relative Humidity [%%] \n')

fprintf('Environment:Site Wind Speed [m/s] \n')

fprintf('Environment:Site Wind Direction [deg] \n')

fprintf('Environment:Site Horizontal Infrared Radiation Rate per Area [W/m2] \n')

fprintf('Environment:Site Diffuse Solar Radiation Rate per Area [W/m2] \n')

fprintf('Environment:Site Direct Solar Radiat

⛳️ 运行结果

🔗 参考文献

[1] Luca Ambrogioni, Umut Güçlü, Marcel AJ van Gerven, and Eric Maris. The kernel mixture network: A non-parametric method for conditional density estimation of continuous random variables. arXiv preprint arXiv:1705.07111, 2017.

[2] Christopher M Bishop. Mixture density networks. 1994.

[3] Isobel C. Gormley and Sylvia Frühwirth-Schnatter. Mixtures of Experts Models. Chapman and Hall/CRC, 2019.

​[4] R.B. Gramacy and H.K. Lee. Bayesian treed Gaussian process models with an application to computer modeling. Journal of the American Statistical Association, 103(483):1119–1130,

2008.

[5] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, Geoffrey E Hinton, et al. Adaptive mixtures of local experts. Neural computation, 3(1):79–87, 1991.

2

[6] Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm.Neural computation, 6(2):181–214, 1994.

​[7] Trung Nguyen and Edwin Bonilla. Fast allocation of gaussian process experts. In InternationalConference on Machine Learning, pages 145–153, 2014.

[8] Carl E Rasmussen and Zoubin Ghahramani. Infinite mixtures of gaussian process experts. In

Advances in neural information processing systems, pages 881–888, 2002.

[9] Tommaso Rigon and Daniele Durante. Tractable bayesian density regression via logit stickbreakingpriors. arXiv preprint arXiv:1701.02969, 2017.

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

MATLAB是一种强大的数学建模和仿真工具,广泛应用于各种领域。数据驱动建模方法是指利用现有数据来构建数学模型的方法。在MATLAB中,可以使用蒙特卡洛算法进行数据驱动建模。蒙特卡洛算法是一种基于随机采样的方法,通过生成大量随机样本,利用统计分析的方法进行模拟和预测。这种方法可以帮助我们找到最优解或者解决一些复杂的问题。在炼油厂选址问题中,我们可以使用MATLAB的蒙特卡洛算法来分析九口油井的不同选址方案,找到最佳的解决方案。另外,使用MATLAB进行数据驱动建模也可以通过基于第一原理的方法来学习建筑物的动态预测模型。然而,这种方法可能非常昂贵和耗时,并且需要大量的传感器和专业知识。相比之下,使用MATLAB进行数据驱动建模能够更加高效和经济地构建建筑物的模型,并且可以通过调整模型来匹配实际测量数据,提高建模的准确性和性能。总之,MATLAB是一种非常适合数据驱动建模的工具,可以帮助我们解决各种复杂的问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [数学建模大赛使用MATLAB解算炼油厂的选址,记得有一年的数据建模大赛试题以及MATLAB程序](https://download.csdn.net/download/li171049/88270008)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [【需求响应】基于数据驱动的需求响应优化及预测研究(Matlab代码实现)](https://blog.csdn.net/m0_73907476/article/details/129201832)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [手把手教用matlab做无人驾驶(二十四)--关于MPC数据驱动相结合的方法架构](https://blog.csdn.net/caokaifa/article/details/124245148)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值