Llama部署过程及踩坑记录

目录

一、Meta版本

1. Llama2 申请

2. 下载安装Llama

二、Hugging face 版本

1. 权限申请

2.模型下载

一、Meta版本

1. Llama2 申请

Meta官网申请链接

1)信息填写:

这一步需要科学上网,最好转到美国,国家也写美国。(试了日本,但到最后一步无法提交。)

2)选择要申请的模型

三代之前的模型需要展开“Previous language & safety models”进行选择。

3)方框打对号,点击下一步。

4)文本框滑到最后,方框打对号,点击下一步。等待审核

5)审核完毕会将通知邮件发到预留的邮箱,点开链接后会显示申请成功:

页面的最后会给出url,下载模型时要输入它进行验证。

2. 下载安装Llama

1)准备好环境,在链接中下载压缩包并保存、解压到所需文件夹下。

2)在解压的文件夹下执行命令

pip install -e .
pip install llama-stack
$ bash download.sh

 这时候会让输入url,复制输入即可

接下来选择想下载的模型,输入后回车

接下来就是下载模型并自动打印日志:


模型的下载过程仍需要科学上网,否则会显示:

Connecting to download.llamameta.net (download.llamameta.net)|54.192.18.67|:443... failed: Connection timed out.

如果服务器不方便,可以现在自己电脑上下好,然后传到服务器里。Windows系统可能会报错如下:

此时需要安装wget工具。

wget下载链接中根据合适版本下载“EXE”文件,并拖入电脑中的“Git\mingw64\bin”文件夹内,再从bash指令开始运行即可。


所有文件下载完毕后,显示如下:

二、Hugging face 版本

1. 权限申请

HF版本的官网链接

1)模型选择

界面下拉,选择想下载的模型。

2)申请权限

点击“Expand to ...”,填写信息并提交。

这里最好地区也选美国,好像更容易通过。

3)通过后,会收到邮件。点击链接,会跳转到model card界面。

2.模型下载

方法一:如果服务器方便科学上网,可以在终端登录。

1)获取 Access Token.

进入hugging face 个人主页,点击settings.

点击“Access Tokens‘,并在右侧界面点击“Create new token”.

2)在服务器的终端中,运行以下命令来登录 Hugging Face 账户

huggingface-cli login

输入密钥,即可得到模型的下载权限。

方法二:网页下载到本地,再拖入服务器

在这个界面下载所有文件到本地,即可使用。

Llama3是一种基于M6的预训练语言模型,通常用于文本生成、问答等自然语言处理任务。它的部署流程一般包括以下几个步骤: 1. **下载模型**:首先需要从Hugging Face的模型库或其他提供者处下载预训练的Llama3模型。你可以使用`transformers`库的`AutoModelForCausalLM`类加载模型。 ```python from transformers import AutoTokenizer, AutoModelForCausalLM model_name = "allenai/llama3-base" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) ``` 2. **环境配置**:确保你的Python环境中已经安装了必要的依赖,如`torch`、`transformers`库以及GPU(如果模型是GPU加速的)。 3. **微调(Fine-tuning)**:如果你有特定的任务数据,可以对模型进行微调。这涉及到将模型放在一个适合的训练循环中,通过输入任务相关的数据并调整模型的权重,使其适应新的上下文。例如,对于序列标注任务,可以使用`Trainer`类: ```python from transformers import Trainer, TrainingArguments # 准备训练数据 train_dataloader = ... # 加载训练数据集 validation_dataloader = ... # 加载验证数据集 training_args = TrainingArguments(..., per_device_train_batch_size=4, ...) trainer = Trainer(model=model, args=training_args, train_dataset=train_dataloader, eval_dataset=validation_dataloader) # 开始微调 trainer.train() ``` 4. **部署**:完成微调后,可以将模型保存到磁盘以便后续使用。然后,在生产环境中,加载模型并调用其`generate()`或`predict()`方法来处理新的文本请求。 请注意,由于Llama3是一个较大的模型,它可能会消耗大量的计算资源,并且微调过程可能需要较长的时间。另外,模型部署通常会涉及服务器、API设计、性能优化等问题。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

琳琳最能吃了

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值