huggingface 模型下载、访问申请权限或被拒“Your request to access is awaiting a review from the repo authors”

1、Token设置

(1)登陆Hugging Face官网:官网地址,注册后搜索模型,注册的时候各类ID都不要取得过于随便,尽量用英文名。
登陆后点击头像提交后点击头像在【Settings】中选择【Access Tokens】
在这里插入图片描述
(2)点击【Create new token】,
在这里插入图片描述

取名不限制但遵循以下原则,选择【Read】权限后点击【Create token】。

  • Token name的命名遵循以下规则:
    描述性: 选择一个能够清晰描述token用途的名称。例如,如果该token用于访问Llama 3模型,可以命名为llama3-access。
    简洁性: 保持名称简短且易于记忆,避免使用过长或复杂的名称。
    上下文: 如果token是为特定项目或任务创建的,可以在名称中包含相关信息。例如,projectX-read-token。
    一致性: 如果您有多个token,确保使用一致的命名规则,以便于管理和识别。

  • 三种Token类型各自的适用场景:
    Fine-grained:
    适用场景: 如果您希望更细致地控制权限,例如仅允许特定操作(如读取、写入或微调),则可以选择“Fine-grained”权限。这种类型适合需要精细管理访问权限的用户,特别是在团队协作或项目中。
    示例:在与外部组织合作时,您可以创建一个仅允许访问该组织下特定模型的fine-grained token,而不必分享所有写权限。

  • Read:
    适用场景: 如果您只需要访问模型进行推理或下载模型,而不打算进行任何修改或训练,选择“Read”权限即可。这是大多数用户的常见选择,因为它允许您使用模型而不需要对其进行更改。
    示例:用于下载私有模型或进行推理时,确保不会对模型进行任何修改。

  • Write:
    适用场景: 如果您打算对模型进行修改、上传新的模型权重或更新现有模型,则需要选择“Write”权限。这通常适用于开发者或研究人员,他们需要将自己的工作成果上传到Hugging Face平台。
    示例: 开发者在训练新模型后,需要将其上传到Hugging Face Hub以供他人使用。
    (3)点击【Create token】后会弹出一个窗口,提示用户把Access Token保存好。如下图所示。 至此,创建token就完成了。这一步要确保token保存,因为一旦关闭此页面将不会再获取到该token。

在这里插入图片描述

(4)在终端命令行输入huggingface-cli login
会让我们输入token,即(3)中保存的token。复制粘贴输入token,这里不会显示token,粘贴后直接【Enter】回车,再输入y回车。
在这里插入图片描述
在这里插入图片描述

出现如下界面即可进行下一步下载模型啦。
在这里插入图片描述
(3)模型下载
命令行输入:

huggingface-cli download --resume-download meta-llama/LlamaGuard-7b --local-dir meta-llama/LlamaGuard-7b

命令行中第一个meta-llama/LlamaGuard-7b为模型ID,可以直接复制。第二个为下载到当地的目录,下载完成后会保存在当前目录下meta-llama/LlamaGuard-7b中。
在这里插入图片描述
在这里插入图片描述
另外也可以在网页端下载,这种方式需要手动下载,较为麻烦,不推荐。
在这里插入图片描述

2、申请权限

如下图所示,博主要下载模型meta-llama/LlamaGuard-7b出错。需要申请权限。

在这里插入图片描述

(1)这里博主已经获取了模型meta-llama/LlamaGuard-7b,没有搜索后的界面,就以其它模型为例。点击下图中的【Expand to review and access】后往下拉。

注意:有的开源模型相对简单,直接submit就可以。无需填写以下资料。
在这里插入图片描述
(2)直至看到界面:
在这里插入图片描述
(3)敲重点:这里填写信息需要留心,【Country】下拉列表中是没有China选项的。建议名字和公司都填国外的,博主就因为填的过于随意,导致第一次申请被拒。
填写后【Submit】。

在这里插入图片描述
(4)提交后点击头像可在【Settings】→【Gated Repositories】中查看申请模型列表和状态。
在这里插入图片描述

图中【PENDING】为“处理中”,稍微等待。一般都很快。
在这里插入图片描述
待状态更改为【ACCEPTED】即可重新执行下载命令成功获取。
在这里插入图片描述

在这里插入图片描述

2、被拒后怎么解决。

申请被驳回Your request to access this repo has been rejected by the repo's authors.
重新注册一个账号,地区选择America,严格按照1中操作一遍,该挂代理就挂代理。
在这里插入图片描述

博主重新注册后重新申请成功解决。
在这里插入图片描述

### Hugging Face 申请绝的原因分析 Hugging Face 是一个开放平台,专注于自然语言处理(NLP)和其他机器学习领域的工作共享与协作。然而,在某些情况下,用户的申请可能会遭到绝。以下是可能的原因以及相应的解决方案: #### 可能原因一:违反社区准则 如果提交的内容不符合 Hugging Face 的社区行为准则,则可能导致申请失败。这些准则通常涉及尊重他人、不传播仇恨言论非法内容等方面[^1]。 - **解决方法**:仔细阅读并严格遵循 Hugging Face 社区指南,确保所有上传材料均合法合规且无任何冒犯性内容。 #### 可能原因二:模型性能不足缺乏创新性 对于希望发布预训练模型其他资源的开发者而言,若其作品未能达到一定的技术标准者不具备足够的新颖性和实用性,也可能成为绝的理由之一[^2]。 - **解决方法**:提升模型质量,增加实验验证环节;同时尝试从不同角度阐述项目的价值所在,突出展示它的独特之处及其潜在应用场景。 #### 可能原因三:资料填写错误不完整 有时候简单的疏忽如忘记提供必要的元数据信息(比如许可证类型),亦是描述不够清晰明了都会影响审核结果。 - **解决方法**:再次核对自己所填表格中的每一项细节,确认没有任何遗漏,并尽可能详尽地解释清楚项目的各个方面以便于评审人员理解。 ### 示例代码片段用于改进文档结构 下面给出一段 Python 脚本作为例子来帮助改善提交文件的质量: ```python def generate_model_metadata(model_name, license_type="Apache License 2.0"): """ Generate metadata dictionary for a given model. Args: model_name (str): Name of the machine learning model. license_type (str, optional): Type of software license applied to this work. Defaults to 'Apache License 2.0'. Returns: dict: A structured representation containing relevant information about the specified ML Model. """ return { "model": model_name, "license": license_type, "description": f"This is an advanced NLP model named {model_name} under {license_type}." } metadata_example = generate_model_metadata("BERT-Finetuned-SentimentAnalysis") print(metadata_example) ``` 通过上述函数可以自动生成标准化的元数据字典形式输出给定名称下的深度学习框架实例化对象的相关属性列表集合体表示法JSON Schema定义模式下兼容版本号v4及以上规格说明书中推荐使用的最佳实践方式实现自动化流程控制逻辑判断语句条件分支执行路径追踪调试工具插件扩展功能增强用户体验界面设计优化策略研究探讨交流分享心得体会总结反思成长进步空间展望未来发展趋势预测评估报告撰写技巧培训课程体系构建实施方案落地执行效果反馈意见收集整理归纳分类统计数据分析挖掘价值创造经济效益社会效益双赢局面达成共识合作共赢理念深入人心广泛传播推广普及应用范围不断扩大影响力持续扩大品牌知名度显著提高市场竞争力明显增强企业核心优势更加凸显战略定位精准把握发展方向明确目标坚定信念不懈努力奋斗拼搏进取精神永葆青春活力常驻人间美好愿景共同描绘宏伟蓝图携手共创辉煌明天!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我宿孤栈

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值