FGAN 解读

代码链接:GitHub - sxxmason/FGANomaly: Implementation of FGANomaly 

级别:IEEE Trans

补充部分GAN的知识

1. 源于论文:《Generative Adversarial Nets

2. GAN的网络框架:

3. “GAN” 与 “对抗样本” 的区别:

“对抗样本” 简介:

对输入图像进行迭代修改,误导神经网络 “指鹿为马”

与 “GAN” 的区别:

“对抗样本” 仅修改输入图像,不被用于网络训练

4. 目标函数(注意并非 “损失函数”):

5. 图示说明 GAN 的训练过程:交替 训练 “判别器” 及 “生成器”

6. 具体算法流程:

(一) 前置知识

1. 观测值 Observation (Sample/Instance)

单维时间序列 —— 标量;多维时间序列 —— m维张量;

2. 重建 / 重构(Reconstruction):基于重构的异常检测方法 首先将 输入数据 分解为 其低维表示(或编码),再用这些编码对输入数据进行重构;

3. 重建误差(Reconstruction error):原始观测值与其相应重建值间的距离;

公式为:

4. 次优性能(sub-optimal performance)

5. 维度诅咒(dimensionality)

(二) 整体框架

(三) Methology

1. 面临的问题 :

正常数据 + GAN → 遵循正常数据分布,生成正常数据,难以重建异常数据,易检测异常;

在实践中,建立一个仅由正常样本组成的训练集非常困难;当训练集被异常样本污染时;

→ GAN 捕获的数据分布不再准确

2.  Pseudo-Label and Filter GAN(伪标签 及 具备过滤功能的GAN):

无监督学习(unsupervised learning)场景下,无法通过标签过滤噪音;

→ 生成基于 重建误差(reconstruction errors)的 伪标签(pseudo-labels):

GAN 在训练初期捕获的异常分布不准确,引入平衡因子(a balance factor)

 获得伪标签后,计算损失值:(我的理解:仅让正样本参与损失值计算)

3.  Adaptive Weighted Loss(自适应、带权重 的 损失机制):

重建误差越大,观测值越可能出现异常 →

可在计算损失前为每个观测值分配一个权重:观测值越有可能为正例,分配给其的权重越大;

在每次迭代反向传播前,获得所有观测值的z-score:

z-score > 0 → 重构误差大于平均水平 → 权重 < 1/w (重构误差越大,对应权重越小);

z-score<0 → 重构误差小于平均水平 → 权重 >1/w (重构误差越小,对应权重越大);

(四) 实验结果

  • 13
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值