无约束问题的最优化条件

本章节将介绍无约束问题中的最优化条件,其中包括五个定理。


定理分析:

定理1:设 f(x) 在 \bar{x} 可微,如果存在方向 d ,使 \bigtriangledown f(\bar{x})^{T}d< 0 ,则存在 \delta > 0 ,使得对每个\lambda \in (0,\delta ) ,有 f(\bar{x}+\lambda d)< f(\bar{x})

证明:函数 f(\bar{x}+\lambda d) 在 \bar{x} 的一阶Taylor展开式为:

f(\bar{x}+\lambda d)=f(\bar{x})+\lambda \bigtriangledown f(\bar{x})^{T}d+o(\left | \left | \lambda d \right | \right |)

=f(\bar{x})+\lambda [\bigtriangledown f(\bar{x})^{T}d+ \frac{o(\left | \left | \lambda d \right | \right |)}{\lambda }]

即只需证明 \bigtriangledown f(\bar{x})^{T}d+ \frac{o(\left | \left | \lambda d \right | \right |)}{\lambda }< 0

其中,当 \lambda \rightarrow 0 时,\frac{o(\left | \left | \lambda d \right | \right |)}{\lambda }\rightarrow 0,又由于 \bigtriangledown f(\bar{x})^{T}d< 0 

所以当 λ 充分小时,\bigtriangledown f(\bar{x})^{T}d+ \frac{o(\left | \left | \lambda d \right | \right |)}{\lambda }< 0

因此存在 \delta > 0 ,使得  \lambda \in (0,\delta ) 时,有  \lambda [\bigtriangledown f(\bar{x})^{T}d+ \frac{o(\left | \left | \lambda d \right | \right |)}{\lambda }]< 0 ,

从而得到:f(\bar{x}+\lambda d)< f(\bar{x})


定理2:设 f(x) 在 \bar{x} 可微,若 \bar{x} 是局部极小点,则 \bigtriangledown f(\bar{x})=0.

证明:用反证法,设 \bigtriangledown f(\bar{x})\neq 0 ,令 d=-\bigtriangledown f(\bar{x}),

\bigtriangledown f(\bar{x})^{T}d=-\bigtriangledown f(\bar{x})^{T}\bigtriangledown f(\bar{x})=-\left | \left | \bigtriangledown f(\bar{x}) \right | \right |^{2}< 0

则由定理1可知,必存在 \delta > 0 ,使得当\lambda \in (0,\delta ) ,有 f(\bar{x}+\lambda d)< f(\bar{x}),这与 \bar{x} 是局部极小点产生矛盾。


定理3:设 f(x) 在 \bar{x} 二次可微,若 \bar{x} 是局部极小点,则 \bigtriangledown f(\bar{x})=0,且Hesse矩阵 \bigtriangledown f(\bar{x})^{2} 半正定。

证明:设 d 是任意一个 n 维向量,由于 f(x) 在 \bar{x} 二次可微,且  \bigtriangledown f(\bar{x})=0 ,则函数f(\bar{x}+\lambda d) 在 \bar{x} 的二阶Taylor展开式为:

f(\bar{x}+\lambda d)=f(\bar{x})+\frac{1}{2}\lambda^{2} d^{T}\bigtriangledown ^{2}f(\bar{x})d+o(\left | \left | \lambda d \right | \right |^{2})

\frac{f(\bar{x}+\lambda d)-f(\bar{x})}{\lambda ^{2}}=\frac{1}{2}d^{T}\bigtriangledown ^{2}f(\bar{x})d+ \frac{o(\left | \left | \lambda d \right | \right |^{2})}{\lambda^{2} }

由于 \bar{x} 是局部极小点,当 |λ| 充分小时,必有 f(\bar{x}+\lambda d)> f(\bar{x}) ,故有d^{T}\bigtriangledown ^{2}f(\bar{x})d\geq 0,即 \bigtriangledown f(\bar{x})^{2} 半正定。


定理4:设 f(x) 在 \bar{x} 二次可微,若  \bigtriangledown f(\bar{x})=0,且Hesse矩阵 \bigtriangledown f(\bar{x})^{2} 正定。则\bar{x} 是局部极小点.


定理5:设 f(x) 是定义在 R^{n} 上的可谓凸函数,\bar{x}\in R^{n},则 \bar{x} 为全局极小点的充要条件是 \bigtriangledown f(\bar{x})=0


例题分析:

例题:利用最优性条件求解下列问题:min f(x)=\frac{1}{3}x_{1}^{3}+\frac{1}{3}x_{2}^{3}-x_{2}^{2}-x_{1}

解:

思路:利用一阶条件求驻点,利用二阶条件判断驻点是否是极小点。

\frac{\partial f}{\partial x_{1}}=x_{1}^{2}-1,\frac{\partial f}{\partial x_{2}}=x_{2}^{2}-2x_{2}

\bigtriangledown f(x)=0\Rightarrow x_{1}=\pm 1,x_{2}=0,2

得到驻点:x_{1}=\binom{1}{0},x_{2}=\binom{1}{2},x_{3}=\binom{-1}{0},x_{4}=\binom{-1}{2}

\frac{\partial^2 f}{\partial x_{1}\partial x_{2}}=0\frac{\partial^2 f}{\partial x_{1}^{2}}=2x_{1}\frac{\partial^2 f}{\partial x_{2}^{2}}=2x_{2}-2

H=\bigtriangledown ^{2}f(x)=\bigl(\begin{smallmatrix} 2x_{1} &0 \\0 &2x_{2}-2 \end{smallmatrix}\bigr)

H_{1}=\bigl(\begin{smallmatrix} 2 &0 \\0 &-2 \end{smallmatrix}\bigr)H_{2}=\bigl(\begin{smallmatrix} 2 &0 \\0 &2 \end{smallmatrix}\bigr)H_{3}=\bigl(\begin{smallmatrix} -2 &0 \\0 &-2 \end{smallmatrix}\bigr)H_{4}=\bigl(\begin{smallmatrix} -2 &0 \\0 &2 \end{smallmatrix}\bigr)

H_{1}H_{4} 行列式小于0,x_{1}x_{4} 是鞍点;

H_{2} 为正定矩阵,x_{2} 是极小点;

H_{3} 为负定矩阵,x_{3} 是及大点。

(行文中若有纰漏,希望大家指正)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

背对人潮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值