矢量分析(二)

上一篇的矢量分析(一)已经说明矢量的基本运算、标量场的梯度、矢量场的散度与旋度。这一篇的矢量分析(二)将说明矢量的积分定理和三个常用的坐标系。

矢量积分定理

这里介绍4个重要的矢量积分定理,分别是高斯定理、斯托克斯定理、格林定理和亥姆霍兹定理。

高斯散度定理

高斯定理的公式如下:

\int_{V}\nabla\boldsymbol{\cdot}\:\boldsymbol{F}\mathrm{d}V=\oint_{S}\boldsymbol{F}\cdot\mathrm{d}\boldsymbol{S}

式中,S为包围体积V的闭合曲面,面元矢量\mathrm{d}\boldsymbol{S}的方向为闭合曲面外法线方。高斯定理说明了矢量场F散度的体积分等于该矢量穿出包围体积的封闭曲面S的总通量。

高斯定理的直观图像可见下图所示:

斯托克斯定理

斯托克斯定理的公式如下:

\int_{s}(\nabla\times \boldsymbol{F})\cdot\mathrm{d}\boldsymbol{S}=\oint_{l}\boldsymbol{F}\cdot\mathrm{d}\boldsymbol{l}

式中,l为任意曲面S的边界,l的绕行方向与曲面S的法线方向满足右手定则。斯托克斯定理定理说明,任一矢量场F的旋度穿出某一曲面S的通量等于此矢量场F沿该曲面S边缘的闭合路径l的环量。

设一个闭合回路l,有一个曲面S由环路l所支撑,好像是渔网S被铁环l所支撑,将曲面S划分成很小的网,给每个网上计算场F的环路积分,将整个曲面上的环路积分相加,就可以得到的是铁丝圆圈l上的环路积分。如下图所示:

格林定理

格林定理也可以称为格林公式或者是格林恒等式,它是由高斯散度定理推导出的一个重要的定义。

令矢量函数\boldsymbol{F}=\varphi\mathrm{~}\nabla\psi,其中ψ和φ都是任意的标量函数,则矢量F的散度可写为

\nabla\cdot \boldsymbol{F}=\nabla\cdot(\phi\nabla\psi)=\nabla\phi\cdot\nabla\psi+\phi\:\nabla^2\psi

应用高斯定理,可得

\int_V(\phi\:\nabla^2\psi+\nabla\phi\cdot\nabla\psi)\:\mathrm{d}V=\oint_S\phi\:\nabla\psi\cdot\mathrm{d}\boldsymbol{S}

上式被称为格林第一公式。如果将两个标量函数相互交换,等式依然成立。可得

\int_V(\psi\:\nabla^2\phi+\nabla\psi\cdot\nabla\phi)\:\mathrm{d}V=\oint_s\psi\:\nabla\phi\cdot\mathrm{d}\boldsymbol{S}

将上述两式相减,可得

\int_V(\psi\:\nabla^2\phi-\phi\:\nabla^2\psi)\:\mathrm{d}V=\oint_S(\psi\:\nabla\phi-\phi\:\nabla\psi)\cdot\mathrm{d}\boldsymbol{S}

上式被称为格林第二公式。在这个公式中,面元矢量\mathrm{d}\boldsymbol{S}=\mathrm{d}S\boldsymbol{n},将标量函数的梯度沿着\mathrm{d}\boldsymbol{S}的法向方向和切向方向分解,可得\nabla\phi=\frac{\partial\phi}{\partial n}\boldsymbol{n}+\frac{\partial\phi}{\partial t}\boldsymbol{t}\:,\nabla\psi=\frac{\partial\psi}{\partial n}\boldsymbol{n}+\frac{\partial\psi}{\partial t}\boldsymbol{t},式中,n是面元矢量的法线方向单位向量,而t是面元矢量的切向方向单位向量。标量n和t分别为这两个方向上的坐标变量,又因为\boldsymbol{t}\cdot \boldsymbol{n}=0,可以得到以下关系

\oint_{s}\left[\psi\left(\frac{\partial\phi}{\partial n}\boldsymbol{n}+\frac{\partial\phi}{\partial t}\boldsymbol{t}\right)-\phi\left(\frac{\partial\psi}{\partial n}\boldsymbol{n}+\frac{\partial\psi}{\partial t}\boldsymbol{t}\right)\right]\boldsymbol{\cdot}\:\boldsymbol{n}\mathrm{d}\boldsymbol{S}=\oint_{s}\left(\psi\frac{\partial\phi}{\partial n}-\phi\:\frac{\partial\psi}{\partial n}\right)\mathrm{d}\boldsymbol{S}

那么格林第二公式还可以写成以下的形式:

\int_{V}(\psi\:\nabla^{2}\phi-\phi\:\nabla^{2}\psi)\:\mathrm{d}V=\oint_{S}\left(\psi\:\frac{\partial\phi}{\partial n}-\phi\:\frac{\partial\psi}{\partial n}\right)\mathrm{d}S

另外,如果考虑到梯度与方向导数之间的关系,也就是f_l=\nabla f\cdot \boldsymbol{e}_l,那么上述结论也是可以推出的。

亥姆霍兹定理

标量场的梯度、矢量场的散度和旋度都可以从不同侧面描述物理场的性质。一个矢量场所具有的性质,完全可由它的散度和旋度来表征;而一个标量场的性质则完全可由它的梯度来表征。这是因为矢量场的散度描述了矢量场沿场量本身方向上的变化率,而其旋度则描述了与场量垂直方向上的变化率,因而一个矢量场各分量的偏导数的许多可能的组合中的两种特定的组合即散度和旋度,能够共同确定一个矢量场的全貌。事实上,任何一种物理的场都必须有某种源,因为场由源引起,且同源一起出现。矢量场的散度和旋度分别对应着矢量场F(r)的两种源:散度对应着通量源,旋度则对应着旋源。而源的分布决定着场的分布,当然也就决定了场量沿各个方向的变化。所以,散度和旋度给出了矢量场F(r)的全部信息。

而亥姆霍兹定理可以描述为:若矢量场F(r)在无界空间中处处单值,且其导数连续有界,则该矢量场F(r)唯一地由其散度和旋度所确定。

可见任何一个矢量场都可以分解成一个无散场分量\boldsymbol{F}_\mathrm{s}(\nabla\cdot \boldsymbol{F}_\mathrm{s}=0)和一个无旋场分量\boldsymbol{F}_\mathrm{i}(\nabla\times \boldsymbol{F}_\mathrm{i}=0)的之和。即:

\boldsymbol{F}(\boldsymbol{r})=\boldsymbol{F}_\mathrm{i}+\boldsymbol{F}_\mathrm{s}

如果已知场量的散度源和旋度源分别为\rho(\boldsymbol{r})\boldsymbol{J}(\boldsymbol{r}),可得:

\nabla\cdot \boldsymbol{F}_\mathrm{i}=\rho\\ \nabla\times \boldsymbol{F}_s=\boldsymbol{J}

再根据亥姆霍兹定理可得:

\nabla\cdot\:\boldsymbol{F}=\nabla\cdot\:(\boldsymbol{F}_{\mathrm{i}}+\boldsymbol{F}_{\mathrm{s}})\:=\rho\\ \nabla\times \boldsymbol{F}=\nabla\times(\boldsymbol{F}_i+\boldsymbol{F}_s)=\boldsymbol{J}

上述两式就是矢量场F(r)的基本方程,求解这两个基本方程就可以得到矢量场F(r)的解。

三种常用的坐标系

在这里,会介绍直角坐标系、圆柱坐标系和球坐标系,这三种常见的正交曲线坐标系。另外还会介绍这三种坐标系的区别和联系。

坐标变换与基本单位矢量

如上图所示,直角坐标系的坐标变量为x,y和z,基本单位矢量为\boldsymbol{e}_x,\boldsymbol{e}_y,\boldsymbol{e}_z,分别沿着x,y和z增加的方向。圆柱坐标系的坐标变量为ρ,φ和z,基本单位矢量为\boldsymbol{e}_\rho,\boldsymbol{e}_\phi,\boldsymbol{e}_z,分别沿着ρ,φ和z增加的方向。球坐标系的坐标变量为ρ,φ和θ,基本单位矢量为\boldsymbol{e}_\rho,\boldsymbol{e}_\phi,\boldsymbol{e}_\theta,分别沿着ρ,φ和θ增加的方向。

在正交坐标系中,基本单位矢量满足右手定则,即:

\begin{cases}\boldsymbol{e}_x\times \boldsymbol{e}_y=\boldsymbol{e}_z\\\boldsymbol{e}_y\times \boldsymbol{e}_z=\boldsymbol{e}_x,\\\boldsymbol{e}_z\times \boldsymbol{e}_x=\boldsymbol{e}_y&\end{cases}\quad\begin{cases}\boldsymbol{e}_\rho\times \boldsymbol{e}_\phi=\boldsymbol{e}_z\\\boldsymbol{e}_\phi\times \boldsymbol{e}_z=\boldsymbol{e}_\rho,\\\boldsymbol{e}_z\times \boldsymbol{e}_\rho=\boldsymbol{e}_\phi&\end{cases}\quad\begin{cases}\boldsymbol{e}_r\times \boldsymbol{e}_\theta=\boldsymbol{e}_\phi\\\boldsymbol{e}_\theta\times \boldsymbol{e}_\phi=\boldsymbol{e}_r\\\boldsymbol{e}_\phi\times \boldsymbol{e}_r=\boldsymbol{e}_\theta\end{cases}

当同一坐标系中的基矢进行叉乘时,相同基矢叉乘为0,不同基矢叉乘时见上式。事实上,在正交坐标系中,基矢都满足类似的叉乘关系,它们在空间任一点构成了一个“本地”的“直角坐标系”,但空间不同位置处,相同的基矢方向也不同。

三种坐标系的基矢、坐标变量和变化范围总结如下:

基 矢坐 标 变 量变化 范 围
直角坐标系\boldsymbol{e}_x,\boldsymbol{e}_y,\boldsymbol{e}_zx,y,z-\infty<x<+\infty,-\infty<y<+\infty,-\infty<z<+\infty
圆柱坐标系\boldsymbol{e}_\rho,\boldsymbol{e}_\phi,\boldsymbol{e}_zρ,φ,z0\leqslant\rho<+\infty,0\leqslant\phi<2\pi,-\infty<z<+\infty
球坐标系\boldsymbol{e}_\rho,\boldsymbol{e}_\phi,\boldsymbol{e}_\thetaρ,φ,θ0\leqslant r<+\infty,0\leqslant\theta\leqslant\pi,0\leqslant\phi<2\pi

坐标变量之间的关系

直角坐标系和圆柱坐标系之间:

\begin{cases}x\:=\rho\mathrm{cos}\phi\:,&\rho=\:\sqrt{x^2+y^2}\\[2ex]y\:=\rho\mathrm{sin}\phi\:,&\tan\phi\:=\:\frac{y}{x}\\[2ex]z\:=\:z\:,&z\:=\:z\end{cases}

直角坐标系和球坐标系之间:

\begin{cases}x=r\sin\theta\:\cos\phi,\quad r=\:\sqrt{x^2+y^2+z^2}\\\\y=r\:\sin\theta\:\sin\phi,\quad\tan\theta=\frac{\sqrt{x^2+y^2}}{z}\\\\z=r\:\cos\theta,\quad\tan\phi=\frac{y}{x}\end{cases}

圆柱坐标系和球坐标系之间:

\begin{cases}\rho=r\sin\theta\:,&r=\sqrt{\rho^2+z^2}\\\\\phi=\phi\:,&\tan\theta=\frac{\rho}{z}\\\\z=r\:\cos\theta,&\phi=\phi\end{cases}
基本单位矢量之间的关系

在不同坐标系之间转换的时候,除了要转换坐标变量,还要转换各个坐标系中的单位基本矢量。这个时候就需要使用到单位圆法。

单位圆法是在选定的合适坐标平面上,以点P为圆心,以1为半径作一个圆,以P为始点做出所有基矢,将欲转换的基矢作为直角三角形的斜边,目标基矢所在方向画出直角边,此斜边的基矢是目标基矢对应直角边的矢量和。

直角坐标系和圆柱坐标系的z轴是相同的。如上图所示,在垂直于z轴( z轴是垂直于纸面向外)的xoy平面,选择一点P,以P点为圆心,以1为半径画一个单位圆。从P点分别作出\boldsymbol{e}_x,\boldsymbol{e}_y,\boldsymbol{e}_\rho,\boldsymbol{e}_\phi,然后在\boldsymbol{e}_x的终点向\boldsymbol{e}_\rho做出垂线,将\boldsymbol{e}_x作为了直角三角形的斜边,那么\boldsymbol{e}_x\boldsymbol{e}_\rho\boldsymbol{e}_\phi上可以分解为\cos\phi \boldsymbol{e}_\rho-\sin\phi \boldsymbol{e}_\phi,所以,\boldsymbol{e}_x=\cos\phi \boldsymbol{e}_\rho-\sin\phi \boldsymbol{e}_\phi,同理可得其他基矢的转换关系:

\begin{cases}\boldsymbol{e}_x=\cos\phi \boldsymbol{e}_\rho-\sin\phi \boldsymbol{e}_\phi\\[2ex]\boldsymbol{e}_y=\sin\phi \boldsymbol{e}_\rho+\cos\phi \boldsymbol{e}_\phi\\[2ex]\boldsymbol{e}_z=\boldsymbol{e}_z\end{cases}\begin{cases}\boldsymbol{e}_\rho=\cos\phi \boldsymbol{e}_x+\sin\phi \boldsymbol{e}_y\\[2ex]\boldsymbol{e}_\phi=-\sin\phi \boldsymbol{e}_x+\cos\phi \boldsymbol{e}_y\\[2ex]\boldsymbol{e}_z=\boldsymbol{e}_z\end{cases}

使用矩阵可以表示为:

\begin{aligned}&\begin{pmatrix}\boldsymbol{e}_x\\\boldsymbol{e}_y\\\boldsymbol{e}_x\end{pmatrix}=\begin{pmatrix}\cos\phi&-\sin\phi&0\\\sin\phi&\cos\phi&0\\0&0&1\end{pmatrix}\begin{pmatrix}\boldsymbol{e}_\rho\\\boldsymbol{e}_\phi\\\boldsymbol{e}_z\end{pmatrix}\\&\begin{pmatrix}\boldsymbol{e}_\rho\\\boldsymbol{e}_\phi\\\boldsymbol{e}_z\end{pmatrix}=\begin{pmatrix}\cos\phi&\sin\phi&0\\-\sin\phi&\cos\phi&0\\0&0&1\end{pmatrix}\begin{pmatrix}\boldsymbol{e}_x\\\boldsymbol{e}_y\\\boldsymbol{e}_z\end{pmatrix}\end{aligned}(1式)

上图是圆柱坐标系和球坐标系之间的基本矢量的转换单位圆。模仿上面的过程,就可以得到下面的圆柱坐标系和球坐标系的基矢转换矩阵:

\begin{pmatrix}\boldsymbol{e}_\rho\\\boldsymbol{e}_\phi\\\boldsymbol{e}_z\end{pmatrix}=\begin{pmatrix}\sin\theta&\cos\theta&0\\0&0&1\\\cos\theta&-\sin\theta&0\end{pmatrix}\begin{pmatrix}\boldsymbol{e}_r\\\boldsymbol{e}_\theta\\\boldsymbol{e}_\phi\end{pmatrix}\\\begin{pmatrix}\boldsymbol{e}_r\\\boldsymbol{e}_\theta\\\boldsymbol{e}_\theta\end{pmatrix}=\begin{pmatrix}\sin\theta&0&\cos\theta\\\cos\theta&0&-\sin\theta\\0&1&0\end{pmatrix}\begin{pmatrix}\boldsymbol{e}_\rho\\\boldsymbol{e}_\phi\\\boldsymbol{e}_z\end{pmatrix}(2式)

将1式带入2式,可得到球坐标系的基矢用直角坐标系的基矢表示的关系:

\begin{gathered} \begin{pmatrix}\boldsymbol{e}_r\\\boldsymbol{e}_\theta\\\boldsymbol{e}_\phi\end{pmatrix} =\begin{pmatrix}\sin\theta&0&\cos\theta\\\cos\theta&0&-\sin\theta\\0&1&0\end{pmatrix}\begin{pmatrix}\cos\phi&\sin\phi&0\\-\sin\phi&\cos\phi&0\\0&0&1\end{pmatrix}\begin{pmatrix}\boldsymbol{e}_x\\\boldsymbol{e}_y\\\boldsymbol{e}_z\end{pmatrix} \\ =\begin{pmatrix}\text{sin}\theta\text{ cos}\phi&\text{sin}\theta\text{ sin}\phi&\text{cos}\theta\\\text{cos}\theta\text{ cos}\phi&\text{cos}\theta\text{ sin}\phi&-\text{sin}\theta\\\text{- sin}\phi&\text{cos}\phi&0\end{pmatrix}\begin{pmatrix}\textbf{e}_x\\\textbf{e}_y\\\textbf{e}_z\end{pmatrix} \end{gathered}

将上式左乘系数矩阵的逆矩阵,就可以得到直角坐标系的基矢用球坐标系的基矢表示的关系:

\begin{gathered} \begin{pmatrix}\boldsymbol{e}_x\\\boldsymbol{e}_y\\\boldsymbol{e}_z\end{pmatrix} =\begin{pmatrix}\cos\phi&-\sin\phi&0\\\sin\phi&\cos\phi&0\\0&0&1\end{pmatrix}\begin{pmatrix}\sin\theta&\cos\theta&0\\0&0&1\\\cos\theta&-\sin\theta&0\end{pmatrix}\begin{pmatrix}\boldsymbol{e}_r\\\boldsymbol{e}_\theta\\\boldsymbol{e}_\phi\end{pmatrix} \\ =\begin{pmatrix}\text{sin}\theta\text{ cos}\phi&\text{cos}\theta\text{ cos}\phi&-\text{sin}\phi\\\text{sin}\theta\text{ sin}\phi&\text{cos}\theta\text{ sin}\phi&\cos\phi\\\text{cos}\theta&-\text{sin}\theta&0\end{pmatrix}\begin{pmatrix}\boldsymbol{e}_r\\\boldsymbol{e}_\theta\\\boldsymbol{e}_\phi\end{pmatrix} \end{gathered}

  • 12
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
地理信息系统原理 北京师范大学 资源学院 矢量数据分析全文共42页,当前为第1页。 2 课堂回顾 1、邻近分析:缓冲分析、泰森多边形 2、叠置分析包括哪些方面? 3、常用的矢量数据操作。 矢量数据分析全文共42页,当前为第2页。 3 矢量数据分析 矢量数据分析全文共42页,当前为第3页。 4 空间数据 数据模型 投影 数据采集 空间数据库 查询 制图 空间分析 矢量数据分析 栅格数据分析 空间插值 视域、流域分析 GeoProcessing 次开发 课程设置 矢量数据分析全文共42页,当前为第4页。 5 Tobler(1970)指出"地理学第一定律:任何事物与其它事物之间都是相关的,但空间上近处的事物比远处的事物相关性会更强"。 矢量数据分析全文共42页,当前为第5页。 6 问题的提出 如何评价健康服务的地理可达性,以揭示该地区医疗配备情况。 如何评价制造业类型的集聚和分散? 汽车行驶的时候,如何选择最短路径和最佳路径? 矢量数据分析全文共42页,当前为第6页。 7 内 容 一、距离量测 、模式分析 三、网络分析 矢量数据分析全文共42页,当前为第7页。 8 距离量算是指要素之间直线(欧式)距离的量算。量测可在一个图层中的点到另一个图层的点之间进行,或在一个图层的各个点到另一图层中的最邻近点或线之间进行。 Near 和Point Distance。其中,near用于计算点图层中每个点与另一个图层中最近的点或线的距离。Point Distance用于计算点图层中每个点和另一图层中所有点的距离。 一、距离量测 矢量数据分析全文共42页,当前为第8页。 9 最近邻分析:使用图层中每个点与其最近邻点的距离,判断该点集合是呈随机的、规则的还是聚集的分布模式。 、模式分析:最近邻分析 矢量数据分析全文共42页,当前为第9页。 10 、模式分析:最近邻分析 矢量数据分析全文共42页,当前为第10页。 11 、模式分析 p 值表示概率值。对于模式分析工具来说,p 值表示所观测到的空间模式是由某一随机过程创建而成的概率。当 p 很小时,意味着所观测到的空间模式不太可能产生于随机过程(小概率事件),因此可以拒绝零假设。 Z 得分是标准差的倍数。例如,如果工具返回的 z 得分为 +2.5,我们就会说,结果是 2.5 倍标准差。如下图所示,z 得分和 p 值都与标准正态分布相关联。 0假设:定义空间对象之间是随机的。 矢量数据分析全文共42页,当前为第11页。 12 、模式分析 矢量数据分析全文共42页,当前为第12页。 13 空间自相关:按照空间赋值状况量测各个变量值之间的相关关系。如果相似的值在空间上相互靠近,则被描述为极相关;反之则认为独立或随机。 、模式分析:莫兰指数 矢量数据分析全文共42页,当前为第13页。 14 、模式分析:莫兰指数 矢量数据分析全文共42页,当前为第14页。 15 、模式分析:莫兰指数 矢量数据分析全文共42页,当前为第15页。 16 、模式分析:莫兰指数 点位置模式表示鹿的位置和在每个位置上看到的数目,则通过点的数量计算其空间的集聚性。 矢量数据分析全文共42页,当前为第16页。 17 、模式分析:莫兰指数 局部莫兰指数:由于全局莫兰指数只能代表空间的集聚性,无法表达局部空间的集聚。局部莫兰指数可以解决这个问题(LISA) : 矢量数据分析全文共42页,当前为第17页。 18 、模式分析:莫兰指数 空间联合局部指标(LISA): 矢量数据分析全文共42页,当前为第18页。 19 、模式分析:莫兰指数 局部莫兰指数(LISA): 矢量数据分析全文共42页,当前为第19页。 20 、模式分析:G统计量 莫兰指数只能检测出具有相近值的要素是否呈现集群,而不能表明集群是由高值或低值组成。 G-统计量,用以区分出高值集群和低值集群。其中,整体G-统计量基于设定的距离d,公式如下: 矢量数据分析全文共42页,当前为第20页。 21 、模式分析:G统计量 矢量数据分析全文共42页,当前为第21页。 22 、模式分析:G统计量 矢量数据分析全文共42页,当前为第22页。 23 、模式分析:G统计量 局部统计量称为"热点"(hot spots),表达在局部区域的同时增高与降低。 矢量数据分析全文共42页,当前为第23页。 24 、模式分析:G统计量 局部统计量称为"热点"(hot spots) 矢量数据分析全文共42页,当前为第24页。 25 三、网络分析:道路系统 绿色点表示位于不同城市中的仓库,面表示它们的市场区域,该市场区域被分为三个环状区域。周围的绿色面表示货车可以在两小时内到达该区域,橙色面表示货车可以在四小时内到达该区域,红色面则表示货车可以在六小时内到达该区域。 矢量数据分析全文共42
安捷伦PNA矢量网络分析仪是现代通信领域中常见的测试仪器之一,常用于分析和测试射频/微波组件、电路、系统和网络等。随着通信技术的快速发展,该仪器的应用越来越广泛,因此,针对该仪器的培训课程也逐渐成为了工程师和技术人员必备的职业技能之一。 具体来说,对于安捷伦PNA矢量网络分析仪培训课程而言,其主要内容包括仪器基础操作、测试原理、仪器配置、网络分析技术、参数设置、测试数据处理与分析等。培训课程一般由厂家和第三方培训机构提供,其中有些课程是线上学习,有些则是现场授课,为客户提供个性化的课程安排和服务。 参加安捷伦PNA矢量网络分析仪培训课程,主要有以下几个好处:一是可以更加深入地了解该仪器的操作和使用方法,从而更加高效地完成自身工作;是可以了解到PNA矢量网络分析仪的测试理论和应用,为解决实际问题提供更加科学可靠的手段;三是通过与其他学员的互动和交流,不断拓展自身的专业视野和技能;四是在企业内部或者外部积累更多的行业人脉和资源,为自身的职业发展创造更多机会。 总而言之,安捷伦PNA矢量网络分析仪培训课程对提升技术人员的专业能力和职业素质具有十分重要的意义,具体的课程安排和内容可以根据不同的需求和实际情况进行选择和确定。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值